ВЛИЯНИЕ ВОЛНОПРИБОЙНОЙ ДЕЯТЕЛЬНОСТИ ЛЕДНИКОВО-ПОДПРУДНОГО ОЗЕРА НА ЯЗЫКИ ЛЕДНИКОВ ЧУЙСКОЙ КОТЛОВИНЫ В ПОЗДНЕМ ПЛЕЙСТОЦЕНЕ

С.Ю. Самойлова

Институт водных и экологических проблем СО РАН, г. Барнаул

Изучение четвертичных отложений Алтая в настоящее время имеет большое теоретическое и практическое значение. В горных районах, испытавших неоднократные плейстоценовые оледенения, немаловажным является вопрос о распространении ледниковых отложений. Несмотря на многочисленные работы отечественных и зарубежных исследователей, в настоящее время не существует однозначной и достоверной картины былого распространения ледников. Для реконструкции прошлых оледенений используются, как правило, моренные комплексы. Применительно к территории Юго-Восточного Алтая, Чуйской котловине в частности, такой подход не всегда дает исчерпывающую характеристику прошлых оледенений. Дело в том, что в котловине в период последнего похолодания существовало ледниково-подпрудное озеро. Многочисленные волноприбойные террасы озера прослеживаются до высоты 2200 и более метров (Девяткин, 1965). Часть языков палеоледников спускалась в озеро и разрушалась волноприбойными явлениями, не формируя моренных комплексов.

Нами была составлена схема позднеплейстоценового оледенения Чуйской котловины с использованием метода имитационного моделирования, предложенного в 2001 г. В.П. Галаховым (Галахов, 2001). Согласно этой схеме, языки ледников хребта Сайлюгем выдвигались в Чуйскую котловину, однако в настоящее время моренных комплексов здесь нет.

На основании теории береговых процессов на современных озерах и водохранилищах и используя формулы действующих нормативных документов, мы оценили характер волноприбойной деятельности Чуйского палеоозера.

Для определения параметров волн водоема, линейные размеры которого не превышают 100 км и для которого выполняется условие $H>0,65\pi_0$, где H= глубина бассейна, а $\pi_0=$

1. Средняя месячная и годовая скорость ветра (м/с) по станции Кош-Агач

Месяц	Скорость ветра [Климатический справочник, 1948]	Скорость ветра [Справочник по климату, 1966]		
Январь	1,0	0,7		
Февраль	1,1	0,9		
Март	1,7	1,6		
Апрель	3,2	3,1		
Май	3,3	3,4		
Июнь	2,9	2,9		
Июль	2,5	2,4		
Август	2,1	2,3		
Сентябрь	2,2	2,2		
Октябрь	2,0	1,9		
Ноябрь	1,7	1,5		
Декабрь	1,0	0,9		
Год	2,1	2,0		

2. Максимальные скорости ветра, наблюдаемые на станции Кош-Агач м/с (Справочник по климату..., 1966)

Характеристика ветра	Скорость	Порыв		
Январь	20	30		
Февраль	20	28		
Март	28	35		
Апрель	26	33		
Май	25	40		
Июнь	25	30		
Июль	22	35		
Август	30	40		
Сентябрь	22	30		
Октябрь	30	38		
Ноябрь	24	31		
Декабрь	25	35		
Год	30	40		

средняя длина волн на бесконечной глубине («волны на глубокой воде») определяются только скоростью и временем действия ветра и разгоном волн (Руководство..., 1973).

Был проведен анализ современных ветровых процессов для Чуйской котловины, в частности, таких показателей, как скорость, направление, повторяемость, максимальные скорости ветра (таблицы 1, 2).

Преобладающими ветрами в Чуйской котловине являются ветры западного и восточного направлений. Сильные ветры (> 15 м/c) наблюдаются в летне-осенний период, т.е. в период, когда на акватории озера отсутствует ледяной покров. Порывы ветра могут достигать ураганной силы (40 м/c).

Однако эти данные относятся к современному времени. По мнению Л.Н. Ивановского, потоки воздушных масс с ледниковых периодов до современного времени относительно

3. Средняя (H, м) и значимая (H_{sig} , м) высота волн в «глубоком» водоеме при нерегулярном волнении

Направление ветра	Длина	Максимальная скорость ветра, м/с							
	разгона, км	5		10		15		20	
		Н	H_{sig}	Н	H_{sig}	Н	H_{sig}	Н	H_{sig}
C	30	0,26	0,41	0,70	1,12	1,17	1,88	1,62	2,59
СВ	30	0,26	0,41	0,70	1,12	1,17	1,88	1,62	2,59
В	60	0,30	0,48	0,86	1,38	1,45	2,32	1,98	3,17
ЮВ	70	0,31	0,49	0,90	1,43	1,51	2,42	2,05	3,28
Ю	30	0,26	0,41	0,70	1,12	1,17	1,88	1,62	2,59
ЮЗ	30	0,26	0,41	0,70	1,12	1,17	1,88	1,62	2,59
3	60	0,30	0,48	0,86	1,38	1,45	2,32	1,98	3,17
C3	70	0,31	0,49	0,90	1,43	1,51	2,42	2,05	3,28

постоянны. «На Алтае установлено, что кары располагаются преимущественно на подветренных склонах, а роза ветров зеркально отражается в экспозиции каров. Анализ расположения каров по сторонам света показал здесь большое постоянство основных потоков воздуха со времени древнего оледенения» (Ивановский, 1967, с. 22).

Это связано с метелевым переносом, и, следовательно, с преобладающими направлениями ветров. Для того, чтобы в высокогорье наблюдался метелевый перенос снега с наветренных склонов на подветренные и, соответственно, формирование каров восточной и северо-восточной экспозиции, скорость ветра тоже должна быть достаточно большой: согласно В.М. Котлякову, более 5 м/с (Котляков, 1994).

Максимальную абсолютную отметку зеркала озера при расчетах принимаем 2100 м, что подтверждается материалами космогенных датировок по 10 Ве эрратических глыб (dropstones) (Reuther et al., 2006). При такой отметке уровня максимальная длина разгона волн при разных направлениях ветра составит от 70 до 30 км.

В соответствии с (Руководство..., 1973) были рассчитаны средние значения параметров нерегулярного волнения. Величина «глубокой воды» принята 30 м (таблица 3). В мировой практике береговых инженерных расчетов используются так называемые «значимые» (significant) высоты и периоды. «Значимая» высота и период волн (H_{sig} , T_{sig}) определяются как средние значения соответствующих величин для одной трети наиболее высоких волн в

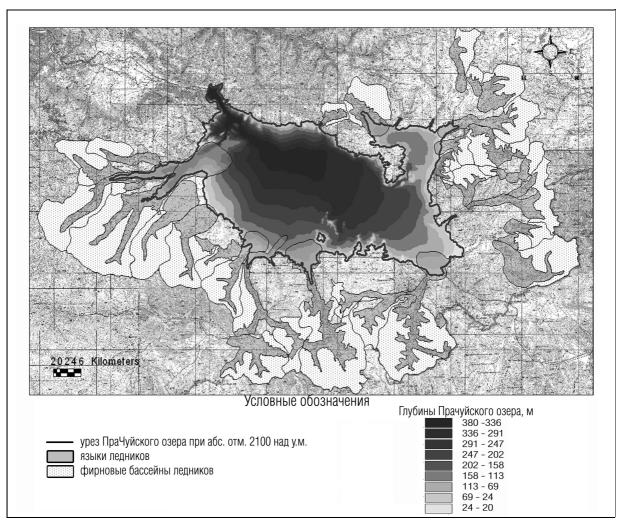


Рис. 1. Схема распространения ледников и ледниково-подпрудного озера на максимум последнего похолодания в Чуйской котловине.

Рис. 2. Язык ледника № 93 (Каталог ледников..., 1977)., спускающегося в небольшое приледниковое озеро (бассейн реки Карагем, правый приток). Фото В.И. Шурова.

установившейся нерегулярной волновой последовательности. Результаты расчетов представлены в таблице 3.

Уже при скорости 10 м/с и максимальной длине разгона волн 60–70 км значимая высота волн достигает 1,4 м. Волна высотой 4 фута (1,2 м) способна опрокинуть глыбу гранита объемом более 0,1 м³ (0,5х0,5х0,5 м), если эта глыба находится на уровне спокойной воды. Ледяные глыбы, отколотые волнением от языка ледника, очевидно, будут интенсивно «перемалываться» и выноситься в акваторию озера (Баском, 1966).

Очевидно, что подобное волнение должно было оказывать существенное влияние на ледники. При абсолютной отметке уровня озера 2100 м часть языков ледников интенсивно разрушалась волнением (рис. 1), а переносимый ими моренный материал выносился в акваторию озера.

Современные аналоги таких языков характеризуются значительным разрушением языка ледника (формируется ледяной обрыв) и отсутствием конечной морены, поскольку рыхлый материал трансформируется волнением (рис. 2).

Литература

- 1. Алтайский край. Атлас. Т.1. Главное управление геодезии и картографии при Совете Министров СССР. Москва-Барнаул, 1978, 222 с.
- 2. Баском В. Волны и пляжи. Л.: Гидрометеоиздат, 1966, 280 с.
- 3. Галахов В.П. Имитационное моделирование как метод гляциологических реконструкций горного оледенения (По материалам исследований на Алтае). Новосибирск: Наука, 2001, 136 с.
- 4. Ивановский Л.Н. Формы ледникового рельефа и их палеогеографическое значение на Алтае. Л.: Наука, Ленингр. отд-ние, 1967, 264 с.
- 5. Каталог ледников СССР. Том 15, вып. 1, часть 5. Бассейн р. Аргут. Л.: Гидрометеоиздат, 1977, 48 с.
- 6. Климатический справочник СССР. Выпуск 20 по Новосибирской области и Алтайскому краю. Новосибирск, 1948, 186 с.
- 7. Котляков В.М. В мире снега и льда. М.: Наука, 1994, 287 с.
- 8. Руководство по расчету элементов гидрологического режима в прибрежной зоне морей и в устьях рек при инженерных изысканиях. М.: Гидрометеоиздат, 1973, 535 с.
- 9. Справочник по климату СССР. Вып. 20. Часть Ш. Ветер. Л.: Гидрометеоиздат, 1966, 575 c
- 10. Anne U. Reuther, Jurgen Herget, Susan Ivy-Ochs, Pavel Borodavko, Peter W. Kubik, Klaus Heine. Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altai Mountains, Siberia, using cosmogenic in situ ¹⁰Be. Geology; November 2006.; v. 34; no. 11; p. 913-916.