НОВЫЕ ДАННЫЕ О ВЕЩЕСТВЕННОМ СОСТАВЕ СЫРЬЯ И ОТХОДОВ АКТАШСКОГО ГМП

Ю.В. Робертус¹, Р.В. Любимов¹, А.С. Сакладов²

¹Алтайский региональный институт экологии и рационального природопользования, с. Майма ²Территориальный фонд информации МПР России по Республике Алтай, г. Горно-Алтайск

Известно, что горнодобывающие предприятия с металлургическим циклом передела являются источниками значительного воздействия на окружающую среду. Основными факторами их влияния являются твердые отходы производства, а также сбросные воды и выбросы загрязняющих веществ в приземную атмосферу.

В Республике Алтай единственным объектом такого профиля является Акташское горно-металлургическое предприятие (АГМП), правоприемник бывшего Акташского рудоуправления, в промзоне которого сосредоточено порядка 1.8 млн. т. шлаков обжига руд (огарков). Последние в виде трех терриконов высотой 15-20 м расположены в прибрежной полосе транзитного водотока – р. Ярлыамры и представляют экологическую опасность для окружающей среды и жителей близлежащих населенных пунктов Акташ и Чибит.

В 2004 г. Алтайским региональным институтом экологии начат мониторинг окружающей среды в районе АГМП и с. Акташ. При этом были получены новые данные по вещественному составу перерабатываемого предприятием ртугьсодержащего сырья (РСО), твердых и жидких отходов его переработки, а также по уровням присутствия тяжелых металлов (ТМ) в основных депонирующих природных средах района.

Данные по вещественному составу перерабатываемых Акташским ГМП в последние годы РСО позволяют условно разделить их на три типа [1] – собственно ртутьсодержащие отходы с алюмосиликатной основой (основной тип) и их разности с повышенным и аномально высоким содержанием Ni, Li, Ag, Sn, Cu (табл.1).

1. Вещественный состав (мг/кг) ртутьсодержащих отходов, перерабатываемых на АГМП

Типы РСО (n)	Si, %	Al, %	Ca, %	Mn	Ni	Cu	Zn	Pb	Sn	Ag	Hg	Li
PCO (5)	30	3.2	4.8	460	90	24	106	19.8	5	0.04	379	220
Ag-Sn-Cu-PCO(1)	3	0.8	0.1	400	300	~10000	400	300	500	15	200	40
Ni-Li-PCO (2)	0.7	0.5	0.2	100	2500	30	30	7	3	0.12	>10000	>10000

Как видно из таблицы 1, аномально высокие концентрации лития в PCO составляют более 1%, меди – 1%, никеля – 0.25%, олова и серебра – 500 и 15 г/т соответственно, и отражают, по-видимому, специфику производства поставляющих их предприятий г. Новосибирска.

Характерно, что первые два типа PCO характеризуются невысоким средним содержанием ртути – 200-379 мг/кг, в то время как в «никель-литиевых» PCO ее присутствует более 1 %, что соответствует средним концентрациям ртути в ранее отработанных киноварных рудах Акташского месторождения.

Отходы бывшего Акташского рудоуправления представлены, главным образом, штольневыми отвалами вмещающих пород и некондиционных руд, ориентировочная масса которых составляет порядка 15-20 млн. т, а также металлургическими шлаками (рудными огарками) и, в меньшей степени, шламом прудка-отстойника технологических вод (осадок фильтрационного стока). Во всех этих типах отходов присутствуют в повышенных и нередко в аномально повышенных концентрациях тяжелые металлы – ртуть и ее элементы-спутники (барий, сурьма, мышьяк, медь, цинк, свинец, литий, никель, кадмий и др.). Их содержание увеличивается в ряду: пустые породы – рудные огарки – шлам прудка-отстойника (табл. 2).

2. Химический состав (мг/кг) твердых отходов Акташского горно-металлургического предприятия

Виды отходов	Si,%	Al,%	Fe,%	Ca,%	Ni	Cu	Zn	Pb	As	Sb	Sn	Cd	Ba	Li	Hg
Пустые породы [3]	17.5	5.5	6	6.5	95	30	60	6	175	170	4	< 20	300	45	н.д.
Пустые породы [2]	н.д.	н.д.	н.д.	3	80	50	1500	80	200	60	10	20	400	300	н.д.
Огарки [3]	1.1	0.7	1	6.2	78	47	37	47	200	85	6.5	20	370	53	161-855
Огарки [2]	н.д.	н.д.	н.д.	20	4000	300	5000	3000	100	80	30	60	8000	800	н.д.
Шлам отстойника [3]	6	2	1.5	6	1500	300	5000	800	100	80	20	30	500	150	> 1 %

Концентрации многих из перечисленных выше металлов во всех этих видах отходов добычи и переработки ртутных руд Акташского месторождения превышает ПДК для почв. Обращает на себя внимание высокое содержание ртути в огарках – 161-855 мг/кг, составляющее 77-407 ПДК для почв, а также значительные различия (на 1-2 порядка) в содержании по разным авторам токсичных элементов в огарках, свидетельствующие как об их крайне неравномерном распределении, так и о слабой изученности состава этого вида отходов.

Установлено, что вещественный состав огарков обусловлен, главным образом, особенностями химизма отработанных руд [3]. Ориентировочный подсчет показывает, что при средней концентрации ртути в огарках 161 мг/кг в терриконах ее присутствует около 300 тонн (7.9% от добытого металла), а также несколько тысяч тонн других токсичных ТМ [1]. Еще больше их содержится в штольневых отвалах пустых пород. В этой связи представляется уместным сравнение находящихся на многолетнем хранении отходов предприятия с «экологической миной» замедленного действия, влияние которой сказывается на расстоянии 100 км от АГМП [2].

Менее значимым по сравнению с твердыми отходами экологическим фактором воздействия АГМП на окружающую среду являются технологические воды металлозавода предприятия, размещаемые без очистки в прудке-отстойнике, не имеющем гидроизоляционного экрана, откуда они фильтруются через огарки в грунтовые воды и р. Ярлыамры. Их вещественный состав до настоящего времени не изучался.

Полученные институтом данные свидетельствуют о повышенном содержании ряда компонентов общего состава технологических вод — щелочей, сульфатов, хлоридов, нитритов, общей минерализации (0.3-1.3 ПДК). Для них характерна повышенная щелочность и аномально высокие концентрации таких загрязнителей как ртуть (1390000 ПДК), медь (30 ПДК), цинк (8.4 ПДК), а также нефтепродукты (10 ПДК), фенолы (22 ПДК), взвешенные вещества — 61.4 фона (табл. 3).

3. Химический состав (мг/дм³) технологических вод размещаемых в прудке-отстойнике

pН	Ca ²⁺	Na ⁺	SO_4^{2-}	Cl ⁻	NO ₂	OM	ХПК	Cu	Zn	Pb	Hg	As	Sb
10.85	49.5	96.9	127.2	98.3	0.068	452.5	8.4	0.030	0.084	0.010	13.900	0.012	0.024
ПДКр.х.	180	_	100	300	0.08	1000	_	0.001	0.01	0.1	0.00001	0.05	0.05

Большой спектр загрязняющих веществ, особенно ТМ 1-2 классов опасности, и высокий уровень их присутствия обусловливает гипертоксичность изученных технологических вод, безвредная кратность разбавления которых по тест-объекту Daphnia Magna Straus составила 20280 раз, что соответствует I классу гипертоксичных сточных вод [3].

Повышенная экологическая опасность охарактеризованных основных типов отходов Акташского ГМП [4] обусловила загрязнение депонирующих природных сред не только в промзоне предприятия, но и в долинах транзитных водотоков района — рек Ярлыамры и Чибитка [2, 3, 5]. Так, имеющиеся данные по уровням присутствия элементов в почвах и донных осадках водотоков свидетельствуют о заметно повышенном, но не превышающем ПДК, содержании в них большинства ТМ, за исключением основных элементов отработанных руд — ртути, мышьяка. Их средние концентрации в почвах района составляют 31.1, 46.0 и 6.7 ПДК соответственно, а в донных осадках — 176.7, 50.0 и 10.4 ПДК, что характеризует их как высоко загрязненные среды [3].

Содержание этих профилирующих элементов руд закономерно увеличивается в ряду ТОСП – почвы – донные осадки – шлам прудка-отстойника, что предположительно свидетельствует об их заметном присутствии в «огарковой» пыли и шламе, транслируемых в вышеотмеченные природные среды (табл. 4).

4. Распределение тяжелых металлов в депонирующих природных средах района АГМП

Объекты	n	Hg	Zn	Cu	Pb	Sb	As	Ni	Mn	Co	Mo	Sn
Среднее содержание (мг/кг)												
Снег (ТОСП), мг/кг	4	20	166	85	72	25	<5	108	820	9.8	2.8	4.6
Почвы, мг/кг	6	84.4	86	86	23	37	75	60	660	21	3.1	3.8
Донные отложения, мг/кг	5	368.5	106	104	20	47	100	76	800	30	2.4	4
ПДК почв, мг/кг	2.1	300	100	32-100	4.5	2	4-50	1500	5-50	5	5	

Повышенный уровень присутствия ТМ 1-3 классов опасности в депонирующих природных средах обусловливает очень высокие значения показателя их суммарного загрязнения (СПЗ). В частности, очень высокими значениями СПЗ (>100) характеризуются донные осадки р. Ярлыамры ниже промзоны АГМП; высокими и умеренными значениями – твердый остаток снеговых проб в районе АГМП и пос. Акташ (60-70 и 20-30 соответственно); низкие и местами высокие значения СПЗ имеют почвы в зоне влияния предприятия (табл. 5).

5. Значения суммарного показателя загрязнения природных сред района АГМП

Объекты	Твердый остато	к снеговых проб	Поч	НВЫ	Донные осадки			
Промзона АГМП	67.7 [5]	68.8 [3]	1 5 56 0 [5]	34.5 [3]	101.2 [5]	124.0 [3]		
с. Акташ	30.0 [5]	19.3 [3]	1.5-56.0 [5]	34.3 [3]	13.1 [5]	124.0 [3]		

Полученные данные позволяют предполагать, что вся масса ТМ и других загрязняющих веществ, содержащихся в утилизируемых РСО (раньше в рудах), переходит в отходы их переработки, из которых под воздействием ветрового и водного переноса они попадают в транзитные и депонирующие загрязнение природные среды — поверхностные и подземные воды, почвы и почвообразующие породы, донные осадки водотоков, растительность.

Исходя из вышеизложенного, можно сделать вывод, что в районе влияния Акташского ГМП присутствует умеренное, участками весьма интенсивное загрязнение компонентов окружающей среды специфической ассоциацией экотоксикантов, среди которых преобладают присутствующие в отходах предприятия и утилизируемом сырье тяжелые металлы и токсичные элементы 1-3 классов опасности.

Литература

- 1. Иванов А.Ю. Тяжелые металлы в объектах окружающей среды района Акташского горно-металлургического предприятия (Горный Алтай) // Проблемы геологии и освоения недр: Труды IX Международного научного симпозиума им. акад. М.А. Усова студентов, аспирантов и молодых ученых. Томск: изд-во ТПУ, 2005. С. 603-605.
- 2. Кац В.Е. Эколого-геохимическое состояние компонентов окружающей среды в районе Акташского горнометаллургического предприятия и поселка Акташ // Бюлл. «Природные ресурсы Горного Алтая». 2004. –Вып. 2. С. 69-75.
- 3. Робертус Ю.В. и др. Результаты работ по мониторингу окружающей среды в районе промзоны АГМП и пос. Акташ. Горно-Алтайск: АРИ «Экология», 2005.
- 4. Робертус Ю.В., Сакладов А.С., Любимов Р.В. Предварительная оценка опасности отходов горнодобывающих предприятий и объектов их размещения на территории Республики Алтай // Бюлл. «Природные ресурсы Горного Алтая». 2005. Вып. 2. С. 135-138.
- 5. Фалалеев Ю.А. Результаты эколого-геохимических исследований в районе пос. Акташ и промзоны Акташского рудника. Майма: АГЭ, 1992.