ЭКОЛОГИЧЕСКОЕ СОСТОЯНИЕ ПРИРОДНОЙ СРЕДЫ В РАЙОНЕ КАЛГУТИНСКОГО РЕДКОМЕТАЛЬНОГО МЕСТОРОЖДЕНИЯ

В. Е. Кап

ОАО «Геологическое предприятие «Алтай-Гео», с. Майма

Калгутинское редкометальное месторождение, отрабатываемое в последние годы ООО «Калгутинское», находится в Кош-Агачском районе Республики Алтай. Оно является уникальным геологическим объектом, характеризующимся весьма сложным вещественным составом руд, многоэтапностью их образования и значительными запасами. Особенность положения месторождения — нахождение его в высокогорной местности на границе с особо охраняемой природной территорией — природным парком Укок. Месторождение эпизодически эксплуатировалось на протяжении почти пятидесяти последних лет (с 1950 г.) Калгутинским рудником. Постоянная смена «хозяев» не способствовала достаточной геологической изученности месторождения, модернизации добычных работ и минимизации воздействия процессов добычи и переработки руд, на окружающую среду. Все это привело к тому, что на современном этапе состояние объектов окружающей среды в районе Калгутинского рудника достаточно напряженное.

Краткий физико-географический очерк.

В административном плане Калгутинское редкометальное месторождение (далее Калгутинский рудник) находится в юго-западной части Кош-Агачского района Республики Алтай, вблизи государственной границы Российской Федерации и Монголии. С административным центром с. Кош-Агач рудник сообщается по автомобильной дороге протяженностью 104 км. В орографическом отношении рудник расположен в верхней части водосборного бассейна р. Жумалы (левый приток р. Джазатор), в истоках р. Правая Жумалы, который относится к высокогорной области Юго-Восточного Алтая с абсолютными высотами от 2500 до 3325 м и сильно расчлененным рельефом (относительные превышения 450-600 м) преимущественно экзарационно-денудационного типа. Здесь интенсивно проявлены экзогенные геологические процессы (морозное выветривание, гравитационно-склоновые процессы и т.п.), которые подготавливают местный литогенный материал для переноса (учитывая наличие маломощных горно-тундровых почв суглинисто-песчаного состава). Климат района суровый, резко континентальный. Среднемесячная температура января минус 35°, июля плюс 13-14°, среднегодовая температура минус 4.1°C. Среднегодовое количество осадков варьирует от 100 до 500 мм. Из-за малого количества осадков в зимний период и частых сильных ветров западных румбов (80 дней со скоростью более 8 м/сек), мощность снежного покрова на склонах южной и западной экспозиции, как правило, незначительна. Средняя скорость ветра составляет 5.6 м/сек [7]. Высокогорные и суровые климатические условия района способствуют широкому проявлению вечной мерзлоты. Её верхняя граница залегает на глубине 1-2 м от дневной поверхности, а максимальная глубина распространения до настоящего времени точно не установлена. Подземные горные выработки, расположенные на глубине 130-140 м от поверхности, еще не вышли из зоны многолетней мерзлоты. В то же время скважинами колонкового бурения, пройденными в диапазоне отметок 2700-2400 м (ниже штольневых горизонтов рудника) вскрыта островная вечная мерзлота мощностью не более 30-50 м. Температура мерзлого слоя варьирует в пределах минус 0.2-4°C [17]. Сезонное оттаивание вечной мерзлоты на глубину 0.5-1.5 м способствует широкому развитию заболоченных участков в долинах рек. Вышеотмеченные природно-климатические условия в районе месторождения обусловливают широкое развитие эолово-метелевого переноса природного (породы, почвы) и природно-техногенного материала (отвалы руды, околорудных пород, хвостов обогащения).

Гидрографическая сеть района выражена реками и ручьями, принадлежащими бассейну реки Катуни (рек Калгуты, Жумалы). Долины рек, разработанные при активном участии ледников, глубоко врезаны в рельеф. Глубина вреза в истоках рек оценивается сотнями метров. Реки района относятся к типично горным водотокам. Их долины имеют троговый поперечный профиль и ширину до 500-600 м (иногда до 1 км). Большинство горных ручьев относятся к временным водным потокам — бурным и водообильным в летние периоды и полностью перемерзающим в период с октября до мая. В верховьях долин рек широко развиты кары со снежниками, не исчезающими даже в летние месяцы. Абсолютные высоты развития каров, являющихся основными участками (областями) питания поверхностных водотоков и подземных вод района, колеблются в интервале отметок 2000-3000 метров, то есть на уровне снеговой линии. В основаниях каровых впадин, как правило, формируются озера. Модули минимального стока рек района колеблется в весьма больших пределах — от 0.2 до 6-10 л/сек/км². Значения коэффициента вариации минимального среднемесячного стока составляют 0.3-0.5, достигая в отдельных случаях 0.7-0.9 [18].

Геолого-гидрогеологические условия.

В структурно-геологическом отношении район рудника находится в Калгутинской вулкано-тектонической депрессии, сложенной средне-верхнедевонским комплексом покровных и субвулканических образований кислого состава, прорванным субщелочными интрузивными гранитоидами (юрский чиндагатуйский комплекс). В долинах рек Правая и Левая Жумалы развиты верхнечетвертичные-современные аллювиальные, пролювиальные, коллювиальные, ледниковые и водно-ледниковые отложения. В гидрогеологическом плане район Калгутинского рудника входит в Алтае-Саянскую гидрогеологическую складчатую область. Подземные воды района образуют скопления в тектонических зонах и имеют надмерзлотный, мерзлотный и подмерзлотный характер. Водовмещающими породами являются вулканогенные породы кислого состава и гранитоиды [17,18].

В кислых вулканогенных породах аксайского комплекса нижнедевонского возраста в верховьях р. Правая Жумалы разведано Калгутинское месторождение подземных вод с эксплуатационными запасами категории C_1 650 м³/сутки. Воды месторождения гидрокарбонатные натриево-кальциевые, кальциево-натриевые, пресные напорные со средним дебитом 11,2 л/сек (скв. 5Г и 6Г) и пьезометрическим уровнем 11-12 метров (по данным ТЦ «Алтайгеомониторинг» 6.10.2003- CVB 14 м) [4,17].

С гранитоидами Калгутинского массива связан источник «Теплый Ключ» (Джумалинские ключи), который находится в долине р. Левые Жумалы, в 750 м юго-западнее обогатительной фабрики рудника Калгуты. Источник представляет собой рассредоточенный выход («струи») трещинно-жильных вод из гранитоидов и перекрывающих их моренных отложений мощностью 2-10 м, из под которых вытекают до 10 родников с дебитом от 0,5 до 15 л/сек (суммарный дебит 14-15 л/сек). Воды родников термальные, пресные, слабощелочные, сульфатно-гидрокарбонатные (гидрокарбонатно-сульфатные) натриевые. Они обогащены фтором (до 15,5 мг/л), кремнекислотой (до 28,2 мг/л), азотом (до 94,7%), благородными газами – радоном (от 7,4 до 107 Бк/л). Температура воды колеблется в зависимости от сезона года от 17° до 22° С[18]. По химическому составу воды Джумалинских родников могут быть отнесены к радоновым водам простого состава (белокурихинский тип) и показаны к бальнеологическому лечению, аналогично курортам «Белокуриха» и «Рахмановские ключи». Местное население использует воду родников для лечебных целей с 50-х годов прошлого века. Здесь на двух высокодебитных источниках построены деревянные домики с купальными ваннами. Помимо трещинных вод, в районе рудника имеются локальные скопления вод среди аллювиальных, пролювиальных ледниковых и водно-ледниковых верхнечетвертичных-современных отложений в долинах рек Правая и Левая Жумалы. Это надмерзлотные воды с сезонной разгрузкой и с большими колебаниями дебита. По составу это гидрокарбонатные натриевые, натриево-магниевые ультрапресные воды (минерализация 0,05-0,1 г/л).

Характеристика Калгутинского месторождения.

Месторождение открыто в 1937 г. при проведении поисково-разведочных работ Южно-Алтайской экспедицией «Казредметразведка». С 1938 г. до начала 90-х годов прошлого столетия на месторождении и его флангах периодически проводились разнообразные геологоразведочные работы, а в период 1944-1949 г.г. и в последнее десятилетие эпизодически проводилась его эксплуатация старательским и промышленным способом.

Рудовмещающая структура Калгутинского месторождения представлена зоной трещиноватости северо-восточного простирания (20-40°) протяженностью более 2 км при ширине до 0,7-1 км. Она локализована на северовосточном фланге одноименного гранитоидного массива, представленного порфировидными гранитами, микрогранитами, гранит-порфирами и, частично, среди измененных кислых вулканитов среднего девона. Основные рудные тела месторождения представлены кругопадающими кварцевыми жилами длиной от первых десятков метров до 330 м при мощности до 1,8 м. Максимальная их протяженность на глубину составляет до 230 м и, возможно, больше. Всего на месторождении учтено 103 из почти шестисот жил и прожилков, главной из которых является рудная жила 87. Кроме жил на месторождении проявлены рудные околожильные грейзены, вкрапленные и прожилковые руды, а также их элювиальные, делювиальные и аллювиальные россыпи. Жильные руды месторождения представлены следующими минеральными типами: кварцево-висмутово-молибдено-вольфрамовые, кварцево-вольфрамовые, квар цево-вольфрамо-молибденовые. Грейзеновые типы оруденения представлены вольфрамо-молибденовыми и вольфрамо-молибдено-висмуго-медно-бериллиевыми рудами. По состоянию на начало 1990 г. запасы комплексных редкометальных руд Калгутинского месторождения по категориям $B+C_1+C_2$ составили 647,9 тыс. тонн, а запасы WO_3- 11,2 тыс. тонн. Другими промышленно ценными компонентами руд являются молибден, медь, висмут, оксид бериллия, а также предположительно благородные металлы и платиноиды [10]. В рудах присутствуют в повышенных концентрациях и другие элементы, в т.ч. экологически опасные – цинк, свинец, железо, марганец, мышьяк, сурьма, ртуть, уран, торий и другие. [1, 2]. С 2002 г. и по настоящее время ООО «Калгутинское» ведется подземная штольневая отработка жильных и грейзеновых молибден-вольфрамовых руд месторождения, после обогащения которых на опытно-промышленной установке выпускается товарная продукция – вольфрамовый концентрат и получается кварц-полевошпатово-сульфидные отходы с высоким содержанием W, Mo, Cu, Bi, Ag, Au, Pt и других металлов.

ЭКОЛОГО-ГЕОХИМИЧЕСКОЕ СОСТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ В РАЙОНЕ КАЛГУТИНСКОГО РУДНИКА

Состояние атмосферного воздуха. Состояние воздушной среды, как правило, оценивается по загрязнению основными (критериальными) загрязнителями: взвешенными веществами, оксидом углерода, диоксидами азота и серы, углеводородами. Район рудника находится в ненаселенной местности, где отсутствуют наблюдения за атмосферным воздухом, поэтому согласно методических рекомендаций «Росгидромета» от 06.11.1998 г. применяются следующие величины (табл. 1). Количество пыли, выпадающей из атмосферного воздуха в районе рудника, оценивалось по результатам снегового опробования, проведенного ФГУП «Алтай-Гео» в рамках ГЭИК-100 в 1999 г. [3, 5]. Установлено, что в районе рудника величина среднесуточной пылевой нагрузки варьирует от 3 до 148 кг/км² при среднем значении 29,2 кг/км² (фон Республики Алтай – 12,6 кг/км²). Такой уровень запыленности соответствует фоновому – низкому уровню загрязнения снегового покрова [8,14]. В твердом остатке снеговых проб (ТОСП) полуколичественным спектральным анализом было выявлено в значимых концентрациях 29 из 32 проанализированных микроэлементов. Сопоставление фоновых концентраций микроэлементов в ТОСП в районе рудника и в приземной атмосфере Республики Алтай (вне селитебных зон) показано в таблице 2.

1. Концентрации загрязняющих веществ в воздушной среде района

№ п/п	Показатели загрязнения	ПДК	Фоновые концентрации, мг/дм ³
1	Взвешенные вещества	0.5	0.22
2	Окись углерода	5.0	0.4
3	Двуокись серы	0.5	0.016
4	Оксиды азота (в пересчете на NO_2)	0.08	0.008

2. Сравнительная характеристика фоновых концентраций микроэлементов в ТОСП в районе Калгутинского рудника и на территории Республики Алтай

$K\kappa = C_{\phi}$ рудник/ C_{ϕ} PA	Микроэлементы	
1	P, Mn, Ba, Sr, Ni, Co, Nb, Yb, Cr, Y	
2-3	Ga, Ti, Pb, Zn, Sc	
4	Sn, Be, Cu	
8-10 и более	Li, Mo, Ag, Zr	

Кроме перечисленных элементов, в ТОСП в районе рудника выявлены сурьма, висмут, вольфрам, германий, наличие которых на фоновых территориях республики не устанавливалось. Анализ таблицы 2 показывает, что все элементы, имеющие $K\kappa > 2$, характеризуют геохимические и металлогенические особенности Калгутинского рудного района.

Величина СПЗ твердого остатка снеговых проб (без учета пылевой нагрузки) в районе рудника варьирует от 24 до 815, т.е. максимальные значения СПЗ соответствуют высокому уровню загрязнения. Практически во всех изученных снеговых пробах установлены повышенные и аномально повышенные (превышающих ПДК для почв) концентрации большой группы рудных элементов и их спутников в ТОСП. Геохимическая формула «накопления» токсикантов выглядит следующим образом (по уменьшению Кс): W_{5000} [Bi $,Mo]_{1000}$ Li $_{800}$ Cu $_{300}$ Zn $_{170}$ Zr $_{100}$ Sb $_{50}$ Nb $_{50}$ [Ga, Be, Ag, Sn] $_{20}$. Как видно из приведенной формулы, по величине коэффициента концентрации рудных и сопутствующих им элементов в ТОСП уровень загрязнения снегового покрова оценивается **как очень высокий и опасный** [14]. Наиболее высокие (ураганные) содержания тяжелых металлов в снеговых пробах выявлены на участках отвалов штольни и обогатительной фабрики. Гидрохимический состав снеговых вод в районе рудника существенно сульфатно-гидрокарбонатный (гидрокарбонатно-сульфатный) натриево-кальциевый, с минерализацией от 5 до 62,6 мг/дм 3 . По сравнению с составом подземных вод (гидрокарбонатные кальциевые) снеговые воды обогащены сульфатами и щелочами.

Состояние почвенного покрова и донных отложений. В районе Калгутинского рудника развиты следующие основные типы почв — горно-луговые альпийские, горно-луговые болотные и горно-тундровые глеевые. Мощность почвенного покрова невелика, не более 0,1- 0,2 м. Состояние почв в районе изучалось ФГУП «Алтай-Гео» по программе ГЭИК-100 и АРИ «Экология» в рамках мониторинга окружающей среды в 2004-2005 гг. [12, 13]. В таблице 3 показаны уровни присутствия в почвах основных и сопутствующих элементов редкометальных руд Калгутинского месторождения.

Как видно из таблицы 3, во-первых, концентрации ряда микроэлементов в почвах в районе рудника существенно отличаются по разным авторам, что предположительно объясняется их высокой неоднородностью распределения и/или разной чувствительностью аналитических методов. Во-вторых, уровень присутствия большой части элементов в почвах района Калгутинского рудника существенно выше, чем в целом по Республике Алтай, а ряд микроэлементов присутствует на уровне 1 ПДК и выше.

Экологическое состояние почвенного покрова в районе оценено по величине СПЗ. Среднее значение этого показателя для района составляет 36,9 единиц (таблица 3, 4), что в 3 раза выше, чем в целом по РА (СПЗ – 12,5) [6], и отвечает высокому уровню загрязнения почвенного покрова. На участках добычных работ и переработки руд величина СПЗ составляет 294-826 единиц, что соответствует очень высокому уровню загрязнения почв [9, 14].

Донные отложения. Донные осадки поверхностных водоемов являются конечным звеном ландшафтно-геохимических сопряжений, интегрирующих геохимические особенности водосборных площадей (речных гидролитосферных бассейнов). Они формируются в результате плоскостной денудации склонов, постоянного врезания русел, растворяющей и транспортирующей роли воды. Особенность донных осадков горных рек — их песчано-гравийногалечниковый состав, среди которого эпизодически встречаются природные и техногенные илы. Другая особенность горных рек — постоянное количество рыхлого материала в русле, т.е. расход (твердый сток) и приход (со склонов) уравновешиваются между собой. Материал твердого стока рек представлен, главным образом, горными породами водосборного бассейна.

Техногенные донные илы, формирующиеся в водотоках, отражают, как правило, тип загрязнения, масштабы которого зависят от гидродинамических особенностей водотока и его геоморфологического строения [14].

3. Концентрации химических элементов в почвах в районе Калгутинского рудника (мг/кг)

Химические элементы	Кларк в почвах (Малюга Д.П.,1961)	Фон для почв РА [6]	Среднее в почвах в районе рудника*	ПДК для почв
Барий	500	360	669 (340)	
Бериллий	6.0	1.0	3.4 (14.3)	10
Бор	10	50	10	·
Вана дий	100	70	95 (67)	50-150
Висмут	1.0	0.006	0.11 (3.6)	
Вољфрам	3.0	1.3	(39.5)	
Галлий	30	10	19	10
Железо	38000	70000	68888	<u> </u>
Иттербий	3.0	2.2	5.6	
Иттрий	50	21	52	
Кобальт	10	10	11 (6.5)	5-50
Кадмий	0.5	0.16	11 (8.0)	3.0
Литий	30	20	32 (58)	5.0
Магний	6000	9000	16111	
Марганец	850	945	723 (1000)	700-1500
Медь	20	20	47.5 (36)	3-100
Молибден	2	1.1	4.0 (11.8)	5
Никель	40	20	38	4-50
Ниобий	10	10	10 (17)	
Олово	10	2.2	3.8 (4.6)	4.5-5.0
Ртуть	0.06	0.18	()	2.1
Серебро	0.1	0.02	0.02 (0.006)	· · · · · · · · · · · · · · · · · · ·
Свинец	10	15	40 (18)	32-100
Скандий	7.0	9.7	12.2	10
Сурьма	1.78	0.25	1.0	4.5-5.0
Стронций	300	170	211	
Таллий	0-1.0	16.1		1.0
Титан	4600	3000	2889	5000
Хром	200	40	150 (28)	100
Фосфор	930	800	555	<u> </u>
Цинк	50	90	71 (71)	300
Цирконий	300	120	156	300

Примечание: * – данные ОАО "Алтай-Гео", в скобках – данные АРИ "Экология" [12, 13]

ПДК – по разным авторам

В районе Калгутинского рудника имеются два значимых источника загрязнения водных систем – эксплуатируемая штольня 18 в верховьях р. Правая Жумала и обогатительная фабрика в ее приустьевой части.

В таблице 5 приведена сравнительная характеристика концентраций химических элементов в донных отложениях в районе рудника и в водотоках РА. Анализ таблицы показывает, что содержание большинства рудных элементов и их спутников в донных отложениях района рудника в 2-10 раз превышают их среднее содержание для РА (серебро, молибден, медь, литий, бериллий, олово, свинец, хром), максимальные превышения характерны для висмута и вольфрама — до 22-138 раз.

Состояние донных отложений поверхностных водоемов в районе рудника также оценено по степени их загрязнения тяжелыми и токсичными элементами. В частности, среднее значение СПЗ донных осадков рек Правая и Левая Жумалы, Жумалы составляет 72, что более чем в 3 раза превышает значения этого показателя для PA - 19.5 [4, 6].

В донных осадках ниже обогатительной фабрики величина коэффициента донной аккумуляции (КДА) основных рудных элементов достигает 650-20000 [12, 13], что соответствует сильному уровню загрязнению донных отложений [8, 14]. Высокий уровень загрязнения почвенного покрова, речных отложений и снегового покрова в районе рудника объясняются наличием редкометального рудного поля (природный фактор) и в антропогенном воздействии на эти среды при добыче и обогащении поликомпонентных руд Калгутинского месторождения.

Состояние подземных вод.

Как отмечалось выше, в районе рудника развиты воды зон трещиноватости в девонских вулканогенных породах и гранитоидах Калгутинского массива. В таблице 6 приведен гидрохимический и микроэлементный состав подземных вод района.

4. Средние коэффициенты концентраций микроэлементов в ТОСП, почвах и донных отложениях района Калгутинского рудника [3]

			Донные		
Кк	Твердый ос тато к	Фоновый	Участок	Участок	(фоновые)
IXK	снеговых вод (Кк ₁)	уровень	штолен	обогатительной	отложения
		$(K\kappa_2)$	$(K\kappa_3)$	фабрики (Кк4)	$(K\kappa_5)$
1-1.5	P, Mn, Ba, Sr, V, Ni, Co,	Co, Nb, Ag, Ti, Zr,	P, Sr, Sc, Cr,	Pb, Mn, Sn, Zn, Zr,	Ga, P
1-1.5	Nb, Yb, Cr, V	V, Zn, Se, Sr	Ga, Y, Yb, Ba	Nb, Ga, Y, Yb	Ga, I
1.5-3	Ti, Pb, Sc	Ba, Ga, Y, Yb, Ni,	Pb, Zn, Mn,	Be	Ba, Be, Yb, Y,
1.3-3	11, 10, 30	Cu, Sn, Pb	Sn, Be, Nb	DC	Mn, Sn, Pb
'	W (5000), Bi (1000), Sn	Be (3.4), Bi (18),	Cu (18),	Cu (22),	Zr (4), Cu (6),
	(20), Be (20) Cu (300), Li	Mo (3.6), Cr (3.5)	Ag (257),	Ag (205),	Mo (12),
> 3	(800), Mo (1000), Ag (20),		Bi (393),	Bi (572),	Ag (20), Cr (5)
	Zr (100), Zn (170) Sb (50),		Mo (19.7), Li	Mo (16), Zn 13)	Bi (24)
	Nb (40) Ca (20)		(9)		
СПЗ	52 (высокий)	36.9 (высокий)	694 (высокий)	826 (высокий)	72 (высокий)

 $K_{K_{1,2}} = \underline{Ccp_{1,2}}$ в районе рудника

Сф по РА

 $K_{K_3} = \underline{\text{Сср на участке штольни } 18}$

Сф

Кк₄ = Сср на участке обогатительной фабрики

Сф

 $K_{K_5} = {\underline {\ \, Ccp \ \, B \ \, nobep \, xhocthы \, x \, \, boдоем \, a \, x \, paйона \, pyдни \, ka}}$

Сф в водотоках по РА

5. Концентрации элементов в речных отложениях в районе Калгутинского рудника (мг/кг)

Химические элементы	Фон для РА [4, 6]	Среднее для района Калгутинского рудника	
Алюминий	н/д	12000	
Барий	431	700 (350)	
Бериллий	2.6	7 (18.5)	
Бор	29	10	
Ванадий	93	75 (87.5)	
Висмут	0.2	6 (4.5)	
Таллий	12	20	
Железо	53459	30000	
Иттербий	3.0	5.0	
Иттрий	25	50	
Кобальт	18	5.3 (10)	
Литий	22	98.7 (133)	
Вольфрам	н/д	(113-138)	
Магний	н/д	26250	
Марганец	1006	1175 (600)	
Медь	43	260 (50)	
Молибден	1,3	15.3 (9.3)	
Никель	32	25 (37-27)	
Ниобий	12	10	
Олово	2.5	5.2 (4.3)	
Серебро	0.04	0.12 (0.08-0.12)	
Свинец	26	57.5 (16-18)	
Скандий	14.7	7.0	
Стронций	192	100	
Цинк	127	86 (60-70)	
Цирконий	167	96	
Применание: в скобках панные АРИ	52	250 (9-29)	

Примечание: в скобках данные АРИ "Экология"

6. Химический и микроэлементный состав подземных вод в районе Калгутинского рудника

Показатели, вещества, элементы	ЦГСЭН (1993 г.)	ОАО "Алтай-Гео" (2003-2005 гг.)	ОАО "Алтай-Гео" (источник "Теплый Ключ")	ПДК питьев ыхвод	
		важина 5 Г	1	[15]	
Макрокомпоненты в мг/дм ³					
рН	7.7	7.5-9.53	8.8-9.2	6-9	
Аммоний	н/о	н/о-0.08	0.016-0.33		
Нитраты	2.3	0.005-9.1	н/о-0.77	45	
Нитриты	0.005	0.005-0.07	н/о-0.01	3.0	
Жесткость	1.0	0.7-2.3	0.55-0.6	7.0	
Хлориды	3.0	3.0-5.33	19.2-20.4	350	
Сульфаты	6.0	3.3-8.1	30.3-30.8	500	
Кальций	14.0	14-36	9.0-11.0		
Магний	3.6	1.8-6.0	0.6-1.1	40.0	
Натрий	16.1	14-32	51.3-54.3		
Гидрокарбонаты	91.5	67.1-207	97-103.7		
Фтор	0.46	0.46-0.71	0.28-8.8	1.5	
Минерализация	140	100-290	210-220	1000	
	N		M ³	-	
Железо	10	12-161	23-167	300	
Свинец	н/о	2.0	н/о-1.2	30	
Цинк	1.2	11.3	3.0-3.9	5000	
Алюминий	10-57	32-21180	48-220	500	
Барий	2.8		8.0	100	
Кадмий		H/o	н/0-0.5	100	
Марганец	0.7		13	100	
Литий	11	11-17	490-595	30	
Хром	5.9		6.0	50	
Молибден	30*		1.0**	250	
Вольфрам	400*		20**	50	
Медь		7.5	1.1-1.4	1000	
Бор	1.2-1.7	17	420	500	
Сурьма		0.9		50	
Мышьяк		1.0		50	
Никель		2.0		100	
Бериллий	6.0*	н/о	н/о	0.2	
Олово	8.0*				
Серебро	60*				
Радон в бк/л			7.4-107.3	120	
Гамма-активность	**	VП !!Г	100-120**		

Примечание:* – данные [17], ** – данные ФГУП "Березовгеология", *** – данные АРИ "Экология"

Как видно из таблицы 6, в подземных водах в районе Калгутинского рудника устанавливается весьма широкий спектр загрязняющих веществ, присутствующих в рудах месторождения и вмещающих их породах. При этом такие элементы как алюминий, литий, вольфрам, фтор присутствуют в концентрациях выше ПДК для питьевых вод [15].

Состояние поверхностных вод.

Приведенный в таблице 7 химический состав поверхностных вод рек Правая Жумалы, Левая Жумалы, Жумалы показывает, что вариации содержания в них компонентов общего состава, по разным авторам, весьма большие. Максимальные концентрации практически всех изученных микроэлементов, особенно лития, вольфрама, молибдена, меди, бериллия, ртуги, железа превышают ПДК и ОБУВ для вод рыбохозяйственных водоемов [16].

Радиационная обстановка

В пределах Калгутинского рудного поля установлен ряд непромышленных проявлений урана, тория, сопровождаемых радиоактивными газами – радоном и тороном. Так, в продуктах обогащения редкометальных руд Калгутинского месторождения, по данным МГП «Экогеос» ТПУ, происходит заметное накопление содержащихся в повышенных количествах вышеотмеченных радиоактивных элементов (табл. 8). Нередко тонкие фракции получаемого вольфрамитового концентрата являются, по сути, урановой рудой низкого качества [11].

7. Гидрохимический состав поверхностных вод в районе Калгутинского рудника

	Вариации со	ПДК и ОБУВ для		
Показатели состава	р. Жумалы			рыбохозяйственных
Tiorasa iesin cociaba	р. Калгуты (ЦГСЭН)	("Алтай-Гео")	(АРИ "Экология")	водных объектов [23]
	N	Такрокомпоненты , м	г/дм ³	
pН	7.8-8.3	7.2-7.7	6.22-6.23	6-9
Аммоний		0.06-0.29	0.06-0.38	0.5
Нитраты	1.5-5.3	0.58-0.77	0.91-1.94	40
Нитриты	0.07	н/о		0.08
Жесткость	0.11-0.32	0.3-1.0	0.1-1.74	7.0
Хлориды	1.5-23.1	9.9-10.8	1.35-4.34	300
Сульфаты	0.8-60.83	6.25-33.3	6.68-18.08	100
Кальций	19-38.08	4.0-5.0	2.0-9.59	180
Магний	0.61-4.86	0.6-1.31	0.7-2.06	40.0
Натрий	10.12-46.46	14.5-24.4	3.31-21.95	
Гидрокарбонаты	61-146.4	24.4-30.5	7.62-8.66	
Фтор	0.06-0.15	0.35-0.38		
Минерализация	110-320	70-100	20-70	1000
Окисляемость			38-194	5-8
ХПК			0.2-4.54	15-30
	1	Микроэлементы, мкг.	/ _{Дм} ³	
Железо			29-290	50
Свинец			<1-1.2	10
Ртуть			< 0.02-0.51	0.1-0.01
Цинк			<1-59	10-50
Литий			1.6-36	0.7
Молибден			< 0.5-469	1.2
Вольфрам			<5-34	0.8
Медь			<1-25	1-5
Бериллий			< 0.05-3.0	0.3

8. Содержание радиоактивных элементов в концентратах и хвостах обогащения руд Калгутинского месторождения

Объекты изучения	U, г/т	Th, г/τ	Th/U
Вольфрамовая руда в отвале	20.7	41.1	2.0
Вольфрамитовый концентрат (фр2)	95	30	0.3
Вольфрамитовый концентрат (+2-20)	37	15	0.4
Хвосты обогащения руд	12.7	28.8	2.3

Значимым экологическим фактором негативного воздействия природных источников радиации на здоровье горнорабочих рудника является чрезвычайно высокая концентрация радона в подземных горных выработках, превышавшая в 1998 г. в законсервированной штольне 18 установленные нормативы от первых единиц до ста раз [11] (табл. 9).

9. Активность радона в природных средах в районе Калгутинского рудника [17].

Изученные объекты		Природные среды	Объемная активность радона	
Што	Устье штольни		9180 Бк/м ³	45.9 ПДК
льня	Депо мастерская	Воздух рабочей зоны	19740 Бк/м ³	98.7 ПДК
18	Камера		15700 Бк//м ³	78.5 ПДК
Источник "Теплый ключ"		Подземная вода	1698 Бк/м ³	8.5 ПДК

ВЫВОДЫ ОБ ЭКОЛОГИЧЕСКОМ СОСТОЯНИИ ОКРУЖАЮЩЕЙ СРЕДЫ

Анализ вышеприведенных материалов по экологическому состоянию депонирующих природных сред в районе Калгутинского рудника показывают, что основные объекты окружающей среды значимо загрязнены тяжелыми металлами и токсичными элементами, источником которых служат руды и вмещающие их породы одноименного месторождения. В частности, уровень загрязнения почвенного покрова, донных отложений и поверхностных вод на площади рудника оценивается в целом как высокий, а экологическое состояние окружающей среды в районе, по имеющимся данным, согласно методическим подходам ВСЕГИНГЕО [8], оценивается как неблагоприятное.

Загрязнение объектов окружающей среды в районе происходит тремя путями:

- 1. Загрязнение со стороны рудного поля Калгутинского месторождения формируется в результате воздействия комплекса природных физических и климатических факторов;
- 2. Природно-техногенное загрязнение создается процессами эолового и водного переноса материала рудных и породных штольневых отвалов, а также хвостов УПО;
- 3. Антропогенное загрязнение формируется в результате всех типов деятельности рудника горнодобывающей, транспортной, обогатительной, бытовой.

Высокий уровень сформировавшегося в настоящее время загрязнения почвенного покрова — основной депонирующей среды имеет природную и техногенную составляющие. Следует отметить, что ранее при оценке экологического состояния территории РА была рассчитана доля природного геохимического фона металлов в почвах [6]. Эта доля в величине СПЗ почв для разных типов материнских почвообразующих пород составляет от 10 до 70%. Расчет показывает, что природный фон СПЗ почв в районе рудника примерно равен 16 единицам, при этом антропогенное загрязнение превалирует над фоном и составляет до 57 % от общего загрязнения почв (по состоянию на 2005 г.).

Литература

- 1. Бабкин Д.И. Загрязняющие элементы в минералах Калгутинского Мо-W месторождения // Проблемы геологии и освоения недр (Труды Седьмого Международного научного симпозиума). Томск: изд-во ТПУ, 2003.
- 2. Бабкин Д.И., Поцелуев А.А. Котегов В.И. Экологически опасные элементы в геологических образованиях Калгутинского Mo-W месторождения // Проблемы поисковой и экологической геохимии Сибири. Томск: изд-во ТПУ, 2003.
- 3. Информационный бюллетень о состоянии геологической среды на территории Республики Алтай в 2004 г. Майма: ОФ ГП «Алтай-Гео», 2005.
- 4. Кац В.Е., Кудрявцева Т.Н. и др. Результаты геоэкологических исследований и картографирования масштаба 1:1000000 территории Алтайского края и Республики Алтай. Майма: ОФ ФГУГП «Алтай-Гео», 1996.
- 5. Кац В.Е. Загрязнение приземной атмосферы в районе рудника Калгуты // Бюллетень «Природные ресурсы Горного Алтая». Горно-Алтайск, 2004. Вып. 1.
- 6. Кац В.Е., Достовалова М.С. и др. Результаты НИР по составлению сводной геоэкологической карты Республики Алтай. Майма: ГП «Алтай-Гео», 1998.
- 7. Научно-прикладной справочник по климату СССР, вып. 20. С.-Пб: Гидрометиздат, 1993.
- 8. Островский Л.Л., Островский В.Н. Методические рекомендации по составлению эколого-геологических карт масштаба 1:1000000. М: ИМГРЭ, 1994.
- 9. Порядок определения размеров ущерба от загрязнения земель химическими веществами. М: Минприроды, 1993.
- 10. Поцелуев А.А. Комплексная оценка на редкие и благородные металлы Калгутинского молибдено-вольфрамового месторождения. Томск: МГП «Экогеос», 2002.
- 11. Рихванов Л.П. и др. Информационная записка о результатах полевых работ по предварительной оценке состояния минерально-сырьевой базы Республики Алтай. Томск: МГП «Экогеос», 1998.
- 12. Робертус Ю.В. Результаты работ по мониторингу окружающей среды в районе Калгутинского рудника в 2004 г.— Горно-Алтайск: АРИ «Экология», 2004.
- 13. Робертус Ю.В. Результаты работ по мониторингу окружающей среды в районе Калгутинского рудника в 2005 г.— Горно-Алтайск: АРИ «Экология», 2005.
- 14. Сает Ю.П., Ревич Б.А. и др. Геохимия окружающей среды. М: Недра, 1990.
- 15. СанПиН 2.1.4.1074-01. Питьевая вода. Санитарно-эпидемиологические правила и нормы.
- 16. Перечень предельно-допустимых концентраций и ориентировочно-безопасных уровне воздействия вредных веществ для воды рыбохозяйственных водоемов. М: Комитет Федерации по рыболовству, 1995.
- 17. Спирин В.Г. и др. Отчет о результатах поисково-оценочных работ на воду на Калгутинском редкометальном месторождении в Горном Алтае. Новосибирск: БПГО, 1991. Теймян И.Б., Штенгелов Р.С. Гидрогеологические и инженерно геологические условия территории листов М-45-Б,Г.- Москва: ЦНИИК и Ф,1968.