ДРЕВЕСНЫЕ ВИДЫ КАК БИОИНДИКАТОР ЭКОЛОГИЧЕСКОЙ ОБСТАНОВКИ (НА ПРИМЕРЕ АГЛОМЕРАЦИИ ГОРОДА ГОРНО-АЛТАЙСКА)

В.А. Ситникова

ФГБУ ВПО «Горно-Алтайский государственный университет», г. Горно-Алтайск

В Республике Алтай к слабо урбанизированным территориям относится хозяйственно-селитебная агломерация г. Горно-Алтайска и его пригородов (Майма, Кызыл-Озёк, Алферово, Карлушка), в которой проживает 85 тыс. чел. или 40 % населения региона. Она расположена в низкогорной расчлененной местности, в основном в долине р. Майма. Отметки её застроенной территории составляют 270-500 м, в среднем 300-350 м.

Ведущими видами хозяйственной деятельности являются: выпуск продуктов питания, производство стройматериалов, оказание коммунальных, транспортных и прочих услуг, строительство, животноводство, растениеводство.

Основными источниками загрязнения на территории агломерации, ввиду отсутствия крупных и средних промышленных предприятий, являются малые котельные (около 130 ед.) и автотранспорт (более 40 тыс.ед.). Выбросы загрязняющих веществ от передвижных источников в 2016 г. составили 15,7 т. т., от стационарных источников – более 1,4 т. т.

До перехода большинства котельных на природный газ (с 2008 г.) для агломерации была актуальна проблема загрязнения воздушного бассейна из-за частных воздушных инверсий в зимний период, вследствие чего выбросы котельных скапливались в приземном слое воздуха, а затем и в почвенном покрове. После перевода основных котельных на газ значения пылевой нагрузки во время отопительного сезона уменьшились в 3-5 раз. В частности, в сезоне 2016-2017 гг. ее средняя величина составила всего 70 кг км²/сут., что соответствует низкой степени запыленности. В последние годы повышенный уровень пылевой нагрузки в зимний период носит локальный характер и отмечается на участках сосредоточения угольных котельных и вдоль основных автомагистралей [Доклад..., 2017].

Следует отметить, что продолжающийся интенсивный рост численности автотранспорта в значительной степени нивелирует положительный в экологическом отношении эффект уменьшения пылевой нагрузки в районе республиканского центра, поскольку приводит к заметному увеличению выбросов вредных газообразных веществ в приземную атмосферу.

Из специальной литературы известно, что древесные виды успешно используются при оценке загрязнения воздушного бассейна территорий и служат надежными биоиндикаторами специфики и интенсивности прошлой и частично текущей антропогенной деятельности [Перельман, 1966; Рихванов и др., 2015].

В 2015-2017 гг. Алтайским региональным институтом экологии с участием автора в пределах агломерации г. Горно-Алтайска проведена комплексная оценка экологического состояния компонентов окружающей среды, включающая изучение растительного покрова по доминирующим на территории древесным видам — березе повислой (Betula pendula) и тополю черному (Pinus nigra L.). В процессе этой работы на площади агломерации было обследовано по 31 дереву каждой породы, в том числе 5 условно фоновых деревьев, произрастающих на окраинах пригородных сел. Для каждой березы определялась категория жизненного состояния, измерялась температура и влажность ствола и корней, радиальный прирост, отбирались образцы листвы для определения асимметрии листовой пластинки (табл. 1).

Отбор образцов листвы древесных видов (по методу средней пробы в нижней части кроны) проведен в конце лета после остановки роста листьев. Листья тополя были озолены по стандартной методике до серой золы и проанализированы на 28 химических элементов методом инструментально нейтронно-активационного анализа (ИНАА) на исследовательском реакторе ИРТ-Т в лаборатории ядерно-геохимических методов Томского политехнического университета (аналитик А.Ф. Судыко).

Таблица 1. Методы определения показателей состояния древесных видов

Показатели	Методы измерения	Использованное оборудование
Жизненное состояние*	Измерения с 3-кратным повтором	Маятниковый высотомер
Температура*	Измерения с 3-кратным повтором	Инфракрасный пирометр AR300
Влажность*	Измерения с 3-кратным повтором	Измеритель влажности micro HYDRO
Радиальный прирост*	Замеры среднего прироста (5,15 лет)	Возрастной бур Haglof, микроскоп МБС-9
Асимметрия листовой	Метод оценки флуктуирующей	Масштабная линейка, транспортир
пластинки*	асимметрии листовой пластинки	
Зольность листьев**	Метод сухого озоления	Муфельная печь, весы, эксикатор
Элементный состав**	Метод ИНАА	Исследовательский реактор ИРТ-Т

Примечание: * – определенные показатели березы повислой, ** – показатели тополя черного

Обработка полученного фактического материала включала: расчет статистических параметров распределения; корреляционный анализ; сравнение с местным и региональным фоном и кларком в биосфере; выявление закономерностей пространственного распределения.

Оценка эколого-физиологического состояния березы проведена с использованием ряда биофизических показателей, в том числе температуры и влажности ствола и корней дерева. В целом ее жизненное состояние в пределах агломерации характеризуется как «ослабленное» (среднее значение — 1,7 или 1,5 фона). Наибольшие значения этого показателя — 3-4 категории состояния (усыхающие деревья) — выявлены в селах Майма, Карлушка и, предположительно, обусловлены близостью Чуйского тракта и аэропорта Горно-Алтайск. Деревья без признаков ослабления (1 категория) преобладают в селах Алферово и Кызыл-Озек (табл. 2).

Из других биофизических показателей максимальные отклонения от фоновых значений присущи градиенту разности температур ствола и корней дерева, который в с. Майма превышает фон в среднем в 3 раза, а на территории агломерации – в 2,4 раза. Обратно сопряженный с этим показателем градиент влажности также имеет наибольшее отклонение от фона в с. Майма – в среднем ниже фона в 1,7 раза (в пределах агломерации в 1,4 раза). Радиальный прирост деревьев за последние 5 лет в с. Майма и г. Горно-Алтайске в среднем на 10 % ниже по сравнению с приростом берез на фоновых участках (табл. 2).

Таблица 2. Биофизические показатели состояния березы на территории агломерации г. Горно-Алтайска

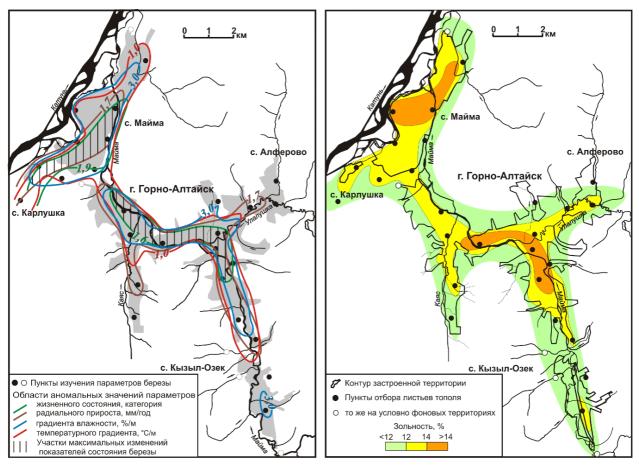
Биофизические показатели	Горно-Алтайск	Майма	Кызыл-Озек	Алферово	Вся агломерация
Жизненное состояние, категория	1,6 (1,4)	1,9 (1,7)	1,5 (1,3)	1,2 (1,1)	1,7 (1,5)
Радиальный прирост за 5 лет, мм	1,7 (0,9)	1,7 (0,9)	1,8 (1,0)	1,8 (1,0)	1,7 (0,9)
Градиент температур, ? °С/м	1,3 (2,4)	1,6 (3,0)	0,5 (1,0)	0,6 (1,1)	1,3 (2,4)
Градиент влажности, ? %/м	3,2 (0,8)	2,6 (0,6)	4,0 (1,0)	4,2 (1,0)	3,1 (0,7)
Среднее значение в пунктах, ед.фона	[1,5]	[1,9]	[1,1]	[1,0]	[1,6]

Примечание: в круглых скобках - значения показателей в единицах фона, в квадратных скобках - модули этих значений.

Корреляционный анализ биофизических показателей состояния березы выявил заметные различия в их связях на территории агломерации и на условно фоновых участках. В частности, для деревьев населенных пунктов отмечено больше значимых связей, чем на окраинах — 9 и 3 связи соответственно. Большинство из них характеризует связи жизненного состояния деревьев с их градиентами влажности и температуры, а также с приростом (табл. 3).

Предварительно установлено, что средняя величина флуктуирующей асимметрии листовой пластинки березы в целом для агломерации равна 0,047, что отвечает 3 классу среднего отклонения от нормы [Захаров и др., 2000]. На фоновых участках этот показатель отвечает 1-2 классам.

3. Связи показателей состояния березы в пределах агломерации и на фоновых участках


Показатели	Категория	Температура			H	Злажно	Прирост		
Показатели	состояния	почвы	ствола	градиент	ствола	корней	градиент	15 лет	5 лет
Категория состояния	1,0	-0,11	-0,09	0,09	-0,92	-0,78	-0,56	0,00	-0,25
Температура почвы	0,15	1,0	0,99	0,82	-0,24	-0,48	0,62	-0,39	-0,78
Температура ствола	0,34	0,80	1,0	0,86	-0,27	-0,51	0,64	-0,45	-0,82
Градиент температуры	0,30	-0,35	0,28	1,0	-0,42	-0,69	0,67	-0,81	-0,99
Влажность ствола	-0,37	-0,34	-0,49	-0,22	1,0	0,94	0,33	0,20	0,56
Влажность корней	-0,25	-0,37	-0,42	-0,08	0,95	1,0	-0,01	0,46	0,80
Градиент влажности	-0,46	-0,04	-0,34	-0,47	0,44	0,14	1,0	-0,71	-0,56
Прирост (15 лет)	-0,48	-0,14	-0,19	-0,06	0,03	0,03	-0,01	1,0	0,79
Прирост (5 лет)	-0,39	0,15	0,15	-0,01	0,26	0,18	0,31	0,16	1,0

Примечание: в верхней части таблицы – связи на фоновых участках; в нижней части – связи на территории агломерации; жирным выделены связи при г ≥0,95, курсивом – околозначимые связи.

Для распределения повышенных (пониженных) значений биофизических параметров в пределах агломерации г. Горно-Алтайска характерны следующие особенности:

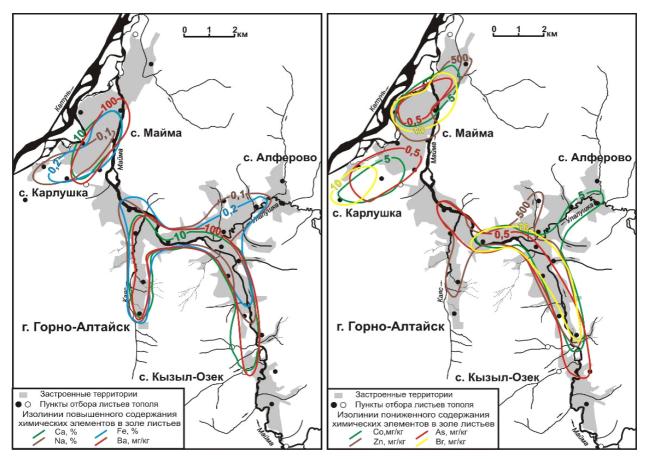
- выделяется две основных области таких значений в с. Майма и г. Горно-Алтайске;
- эти области имеют узкую линейную форму и приурочены в с. Майма к Чуйскому тракту, а в г. Горно-Алтайске к пр. Коммунистический, ул. Чорос-Гуркина и Ленина;
- эпицентры этих областей локализованы в с. Майма на отрезке разъезд-с. Карлушка, в г. Горно-Алтайске от остановки «Трактовая» до микрорайона Гардинка (рис. 1).

Проведенный анализ распределения по интервалам высот изученных биофизических показателей березы повислой показал, что на территории г. Горно-Алтайска проявлены следующие разнонаправленные тренды их поведения (табл. 4):

Рис. 1. Показатели состояния древесных видов в пределах агломерации Горно-Алтайска. (слева – биофизические показатели березы повислой, справа – зольность листьев тополя черного)

Таблица 4. Показатели состояния березы повислой по интервалам высот в г. Горно-Алтайске

Показатели	Зна	чения по ин	Отношение		
Показатели	<300 м	300-350 м	350-400 м	>400 M	>400 м/<300 м, ед.
Γ	Іоказатели с	остояния бер	оезы		
Категория жизненного состояния	2,2	1,4	1,3	1,0	0,45
Средняя температура ствола, °С	22,0	21,3	19,2	17,8	0,81
Средняя температура почвы, °С	18,8	18,3	17,8	16,9	0,90
Градиент температур ствол/почва, ? °С/м	1,6	1,5	0,5	0,2	0,13
Средняя влажность ствола, %	16,6	18,6	20,3	27,2	1,64
Средняя влажность корней, %	12,5	13,6	14,6	21,0	1,68
Градиент влажности ствол/корни, ? %/м	2,0	2,5	2,8	3,1	0,75
Радиальный прирост за 15 лет, мм	1,7	1,9	2,0	2,2	1,29
Радиальный прирост за 5 лет, мм	1,6	1,7	1,8	2,0	1,25
Величина асимметрии листа, ед.	0,054	0,051	0,047	0,40	0,74


Примечание: выделены жирным шрифтом и курсивом максимальные и минимальные значения соответственно.

- максимальные значения категории жизненного состояния, температурных показателей ствола и корней, а также величины асимметрии листьев березы проявлены на территории города с отметками менее 300 м, а минимальные на участках с отметками более 400 м;
- минимальные значения показателей влажности ствола и корней, а также величины радиального прироста за последние 15 и 5 лет отмечены на территории с отметками менее 300 м, а максимальные значения на участках с отметками более 400 м;
- отношение значений охарактеризованных показателей березы в интервалах высот более 400 м / менее 300 м варьируется в пределах от 0,13 ед. (градиент температур ствол/ почва) до 1,68 ед. (средняя влажность корней) и в целом по всем показателям равна по модулю двукратному позитивному изменению на фоновых участках с отметками более 400 м.

Таблица 5. Содержание микроэлементов в листьях тополя черного в районе г. Горно-Алтайска, мг/кг

МЭ	К*	РГФ**	МФ***	Содержание в	Среднее сод	ержание (\bar{x})	Отноше	ение, ед.
IVI	IX.	$\Pi\Psi$	WIΨ	золе, от-до	в золе	в листьях	$\overline{\mathbf{x}}$ зола/РГФ	\overline{x} листья/МФ
Ce	3.10-5	2,54	0,2	0,05-10,42	2,83±2,49	0,37±0,33	1,1	1,8
Ca	1,6.10-2	13,2	3	2-19,9	8,2±5,1	1,10±0,67	0,6	0,4
U	2.10-6	0,30	_	0,02-2,1	$0,29\pm0,27$	$0,04\pm0,04$	1,0	2,0
Th	8.10-6	0,33	0,05	0,004-1,48	0,33±0,31	$0,04\pm0,04$	1,0	0,8
Cr	5.10-5	8,10	2	0,9-19,2	9,6±5	1,3±0,7	1,2	0,6
Yb	2.10-6	0,09	0,03	0,002-0,61	$0,15\pm0,14$	$0,02\pm0,2$	1,7	0,7
Au	7.10-10	0,010	0,0003	0,0002-0,043	$0,005\pm0,08$	$0,001\pm0,01$	0,5	3,3
Ba	3,6.10-5	168	10	7-426	107±113	14,1±14,9	0,6	1,4
Sr	4.10-5	1196	50	38-1158	367±320	48±42	0,3	1,0
As	3.10-6	1,10	0,2	0,09-1,74	$0,72\pm0,41$	0,1±0,02	0,7	0,5
Ag	5.10-8	0,25	0,03	0,03-0,25	0,14±0,11	0,02±0,01	0,6	0,7
Br	$2,6.10^{-5}$	69,2	5	3,6-115,6	30,8±28,3	4,1±3,7	0,5	0,8
Cs	6.10-6	0,28	0,05	0,3-1,13	$0,4\pm0,24$	$0,05\pm0,03$	1,4	1,0
Sc	7.10-6	0,51	0,1	0,11-4	$0,71\pm0,79$	0,1±0,1	1,4	1,0
Rb	$3,3\cdot10^{-8}$	35,7	20	10,6-156,3	66,4±42,7	8,8±5,6	1,9	0,4
Fe	$2,2\cdot10^{-2}$	0,20	0,05	0,04-0,93	$0,23\pm0,2$	$0,03\pm0,03$	1,2	0,8
Zn	4,6.10-5	1154	200	142-1572	713±410	94±54	0,6	0,5
Ta	2.10-6	0,03	0,01	0,01-0,11	$0,05\pm0,03$	$0,01\pm0,003$	1,7	1,0
Co	$2,2\cdot10^{-5}$	8,7	2	1,7-22,3	7,1±4,5	0,9±0,6	0,8	0,4
Na	1,9·10 ⁻²	0,20	0,02	0,02-3,47	0,21±0,61	$0,03\pm0,08$	1,1	1,5
La	1.10-5	1,6	0,2	0,2-9,32	2,13±2,55	$0,28\pm0,34$	1,3	1,4
Sb	2,5·10-	0,40	0,05	0,03-2,84	$0,35\pm0,49$	$0,06\pm0,06$	0,9	1,2

Примечание: * – кларк элемента в биосфере [Иванов, 1994]; ** – региональный фон [Рихванов и др., 2015]; *** – местный фон.

Рис. 2. Биогеохимические ореолы МЭ в золе листьев тополя на площади агломерации. (слева – ореолы повышенных концентраций МЭ, справа – ореолы пониженных концентраций МЭ)

Эти закономерности высотно-поясного поведения изученных показателей березы идентичны распределению пылевой нагрузки на территории города. Установлено, что с увеличением высоты местности её запыленность уменьшается, причем эта связь значима на уровне 99 % [Робертус, Ситникова, 2016]. Можно считать, что на высотах более 100-120 м над урезом р. Майма (отметки более 400 м), являющихся верхней границей смогоподобных образований, запыленность снежного покрова и показатели состояния березы в целом соответствует их фоновому уровню [Ситникова, 2016].

Распределение концентраций микроэлементов (МЭ) в золе листьев тополя черного на территории агломерации неравномерное. Их амплитуда варьируется от одного до трех порядков, а вариации среднего в основном больше 70 %. В то же время, средние концентрации в его листьях большинства изученных МЭ выше или ниже местного фона всего в 2,5-3,3 раза (табл. 5). Сравнение их среднего содержания в золе с региональным фоном выявило две группы МЭ, первая их которых характеризуется преобладанием среднего содержания над фоном (Fe, Cr, Rb, Cs, La, Ce, Yb, Br, Th и др.), а содержание второй группы МЭ ниже фона (As, Sb, Zn, Co, Ag, Au и др.). Первая группа предположительно представлена ассоциацией МЭ, содержащихся в выбросах угольных котельных, а вторая — в выбросах автомобильного транспорта. Эти основные ассоциации химических элементов в листьях тополя образуют на территории агломерации как положительные (Са, Na, Fe, Ba и др.), так и отрицательные (Zn, As, Sb, Br, Ag, Au и др.) биогеохимические ореолы, пространственно совпадающие между собой и с областями аномальных значений биофизических параметров березы. Они также тяготеют к Чуйскому тракту в с. Майма и к центральным улицам г. Горно-Алтайска (рис. 2).

Наличие вышеотмеченных ассоциаций и разнонаправленные тенденции поведения входящих в них МЭ проявлены и в их корреляционных связях. Так, микроэлементы первой

Таблица 6. Корреляционные связи МЭ в золе листьев тополя на территории агломерации

Ca	Fe	Na	Ce	Th	Cr	Au	Ba	Sr	As	Br	Cs	Sc	Rb	Zn	Co	La	Sb	МЭ
1,0	0,14	-0,09	0,40	0,23	-0,02	-0,17	0,87	0,93	0,49	0,49	0,52	0,06	0,57	-0,02	0,30	0,41	-0,16	Ca
	1,0	0,04	0,84	0,89	0,72	0,31	0,23	0,11	0,50	0,08	0,56	0,98	0,08	-0,20	0,35	0,40	0,47	Fe
		1,0	0,80	0,02	0,04	-0,03	-0,09	-0,10	-0,07	-0,06	-0,18	0,01	-0,01	0,26	-0,14	0,03	-0,03	Na
			1	0,94	0,72	0,07	0,51	0,38	0,83	0,30	0,73	0,75	0,09	0,00	0,51	0,66	0,43	Ce
		_		1	0,72	0,13	0,37	0,22	0,59	0,09	0,61	0,82	-0,04	-0,06	0,27	0,49	0,42	Th
			'		1	0,25	0,01	-0,05	0,45	0,04	0,32	0,63	-0,24	-0,25	0,29	0,33	0,83	Cr
				'		1	-0,26	-0,26	0,24	-0,27	-0,05	0,28	-0,16	-0,05	-0,15	-0,13	0,33	Au
							1	0,91	0,57	0,51	0,68	0,19	0,52	0,01	0,35	0,47	-0,23	Ba
								1	0,57	0,58	0,49	0,08	0,61	0,04	0,30	0,42	-0,20	Sr
							,		1	0,29	0,45	0,45	0,35	0,13	0,32	0,42	0,24	As
								'		1	0,26	0,07	0,54	0,06	0,69	0,66	-0,16	Br
											1	0,53	0,46	0,04	0,37	0,40	-0,01	Cs
										•		1	0,13	-0,18	0,33	0,36	0,40	Sc
													1	0,23	0,34	0,24	0,36	Rb
												'		1	-0,01	0,07	-0,27	Zn
													'		1	0,64	0,09	Co
															·	1	0,10	La
																	1	Sb
-												0 0 5	,					

Примечание: выделены значения парной корреляции при $r \ge 0.95$ (светло-серым), $r \ge 0.99$ (темно-серым).

ассоциации имеют, как правило, более тесные и множественные связи между собой (до 60 % и более), в то время как МЭ второй ассоциации имеют единичные значимые связи или они отсутствуют (Zn, Au). Отсутствие связей натрия с другими МЭ предположительно объясняется его поступлением с автодорог, обрабатываемых зимой песчано-солевой смесью.

Для распределения изученных МЭ в листьях тополя на территории города проявлены идентичные с показателями состояния березы закономерности высотно-поясного поведения. Установлено, что с увеличением высоты местности концентрации большинства МЭ постепенно увеличивается, и на высотах более 400 м превышает их содержание в 1,7-4,5 раза, в среднем в 2,5 раза (табл. 7). Для зольности листьев тополя проявлен противоположный тренд — её уменьшения с высотой в 1,5 раза, вероятно обусловленный снижением количества неорганической пыли на листьях. Участки с наибольшей зольностью листьев тополя в целом совпадают с областями аномальных значений биофизических показателей березы (рис. 1).

Вышеизложенные особенности специфики реагирования древесных видов агломерации г. Горно-Алтайска на загрязнение окружающей среды позволяет сделать следующие выволы:

Таблица 7. Биогеохимическая характеристика тополя черного на территории г. Горно-Алтайска

Показатели	Содержа	Содержание в золе листьев по интервалам высот									
Показатели	<300 м	300-350 м	350-400 м	>400 M	>400 м/<300 м, ед.						
Зольность, %	15,2	13,2	12,5	10,2	0,67						
Кальций, %	7,5	9,2	10,2	13,8	1,84						
Натрий, %	0,1	0,12	0,14	0,18	1,80						
Железо, %	0,17	0,26	0,47	0,75	4,41						
Хром, мг/кг	7,6	12,2	12,8	17,5	2,30						
Цинк, мг/кг	459	531	589	789	1,72						
Мышьяк, мг/кг	0,65	0,72	0,75	1,57	2,42						
Рубидий, мг/кг	46,4	57,5	130,4	165,8	3,37						
Барий, мг/кг	93,6	114,1	205,8	425,7	4,55						
Стронций, мг/кг	318	501	531	828	2,60						
Цезий, мг/кг	0,26	0,28	0,62	1,13	4,35						
Скандий, мг/кг	0,8	0,9	1,82	2,53	3,16						
Лантан, мг/кг	3,1	4,1	4,4	5,8	1,87						

Примечание: выделены жирным шрифтом и курсивом максимальные и минимальные значения соответственно.

- распределение изученных показателей состояния и состава древесных видов носит отчетливо выраженный высотно-поясный характер;
- на территории агломерации сформировано две области аномальных значений биофизических параметров березы и элементного состава листьев тополя, приуроченных к Чуйскому тракту и к основным автомагистралям города;
- показатели эколого-физиологического состояния березы повислой, зольность листьев и элементный состав листьев тополя служат надежными биоиндикаторами специфики и интенсивности прошлой и текущей антропогенной деятельности на территории агломерации.

Литература

Доклад о состоянии и об охране окружающей среды Республики Алтай в 2016 году / Под ред. Ю.В. Робертуса. Горно-Алтайск: 2017. 125 с.

Захаров В.М., Баранов А.С., Борисов В.И., Валецкий А.В. Здоровье среды: методика оценки. - М.: Центр экологической политики России, 2000. - 68 с.

Иванов В.В. Экологическая геохимия элементов. Кн.1. - М.: Недра, 1994. - 304 с.

Перельман А.И. Геохимия ландшафта. - М.: Высшая школа, 1966. - 392 с.

Рихванов Л.П., Юсупов Д.В., Барановская Н.В., Ялалтдинова А.Р. Элементный состав листвы тополя как биогеохимический индикатор промышленной специализации урбасистем // Экология и промышленность России, 2015, № 6, с. 58-63.

Робертус Ю.В., Ситникова В.А. Особенности высотного распределения радионуклидов и тяжелых металлов в почвах г. Горно-Алтайска // Матер. V Межд. конф. «Радиоактивность и радиоактивные элементы в среде обитания человека». Томск: AST, 2016. С. 568-571.

Ситникова В.А. Экологическое состояние древесных видов в районе города Горно-Алтайска [Электронный ресурс] // Вестник молодых ученых: сборник научных трудов № 13. Горно-Алтайск: РИО ГАГУ, 2016. С. 244-248. — Режим доступа: <u>library.gasu.ru</u>