АБСОЛЮТНЫЙ ВОЗРАСТ И ПЕТРОГЕОХИМИЯ ВЛАДИМИРОВСКОГО МАССИВА ГОРНОГО АЛТАЯ

А.И. Гусев, Н.И. Гусев1

Алтайский государственный гуманитарно-педагогический университет им. В.М. Шукшина, г. Бийск, 1 ФГУП «Всероссийский геологический исследовательский институт им. А.П. Карпинского», Россия, Санкт-Петербург

ВВЕДЕНИЕ

В северном обрамлении Коргонского прогиба при ГДП-200 [Уваров и др., 1999] выделено несколько штоков габброидов и диоритов, отнесённых к майорскому комплексу (Владимировский, Тимофеевский, Кириловский, Еловский и другие Владимировского ареала) [Шокальский и др., 2000]. С некоторыми из них связаны специфические типы оруденения: скарновые кобальтовое и железорудное, а также некоторые проявления уранового и редкометалльно-редкоземельного составов. К этой же полосе приурочен и Кумирский шток с одноименным скандий-уран-редкоземельным месторождением. Такой ассоциации типов оруденения нигде более в Коргонском прогибе не наблюдалось.

При проведении студенческих практик (2008-2014 годы) и экспедиции Русского географического общества «Коргон-2020» и «Коргон-2021» в этом районе установлено, что визуально габброиды и диориты, а также ассоциации дифференциатов и дайковых образований и связанных с ним типов оруденения, не укладывались в понимание типоморфных разностей майорского комплекса и его металлогении. В этой связи стало весьма актуальным более детальное изучение вещественного состава Владимировского массива и определение его абсолютного возраста.

АНАЛИТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

ІСР-МЅ анализ проведен в ЦЛ ФГУП «ВСЕГЕИ» (г. Санкт-Петербург); определения редких элементов в горных породах выполнены эмиссионной спектрометрией с индуктивно-связанной плазмой на спектрометре «ОРТІМА-4300», для Сu, Zn, Pb, Li — методом ІСР-АЕЅ; U—Рb изотопное датирование — SHRІМР II. При выборе в цирконах участков для анализа использовались оптические и катодолюминесцентные наблюдения. U-Pb отношения были нормированы на значение 0,0668 по соответствующему стандарту «Тетога». Погрешность измерений единичных анализов в пределах 1s, для расчетных конкордантных возрастов и их пересечений с конкордией — 2s. Графики строились с использованием программы ISOPLOT/ЕХ.; масс-спектрометрическое определение изотопного состава Sm—Nd — в Центре изотопных исследований ВСЕГЕИ.

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ УЧАСТКА

Владимировское месторождение (рис.1) расположено в зоне Чарышско-Теректинского разлома. Месторождение приурочено к зоне скарнов в контакте габбро-диоритового массива (ранее относимого к майорскогому комплексу, $D_{\text{1-2}}$), прорывающего туфы и лавы плагиоклазовых, пироксен-плагиоклазовых порфиритов и риолитов нижнедевонской коргонской свиты(?).

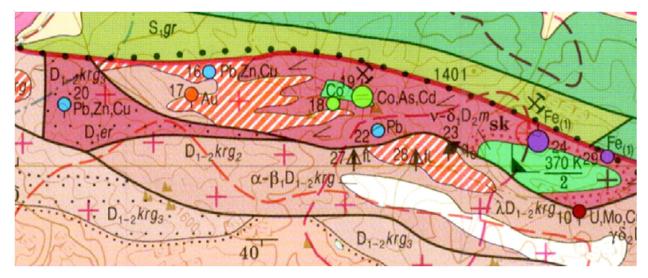


Рис. 1. Геологическое строение района Владимировского кобальтового месторождения (по [Уваров и др., 1999]). Фрагмент карты полезных ископаемых из комплекта ГК-200/2 листа М-45-VII.

По нашим данным, массив сложен небольшими штоками с двумя фазами внедрения. В первую фазу формировались габбро, монцогаббро и габбродиориты, во вторую — диориты, монцодиориты и диоритовые порфириты (рис. 2). Дериваты ранней фазы тяготеют к контактовой части, а более поздние локализуются в центре штока. Такой характер зональности свидетельствует о том, что дифференциация глубинного очага происходила сравнительно быстро, при этом ранние фазы не успевали закристаллизоваться и легко прорывались последующими с формированием прямой зональности [Vigneresse, 1998].

В составе интрузива преобладают диоритовые порфириты с минеральным составом, %: плагиоклаз ($\mathrm{An_{28-42}}$) — 20-80, клинопироксен — 10-30, роговая обманка — 10-50, калишпат — 5-20, акмит — 0-5, биотит, кварц — 0-5, вторичные эпидот — 1-15, хлорит — 1-20, титанит — 1-7, единичные зерна апатита, турмалина, пирита, ильменита, ругила. В габбродиоритах доля клинопироксена увеличивается до 50%, а более основной плагиоклаз соссюритизирован. В рудном поле распространены дайки базальтоидов.

СКАРНЫ И НАЛОЖЕННОЕ ОРУДЕНЕНИЕ МЕСТОРОЖДЕНИЯ

Зона скарнов с наложенной кобальтовой минерализацией имеет мощность 400 м и протяженность более 2 км. Скарны образованы в результате метасоматического замещения туфов риолитов, плагиоклазовых порфиритов, ранее относимых к коргонской свите девона, и в меньшей мере — за счет пород интрузива. Амфибол-гранатовые и гранат-пироксеновые скарны в рудных зонах преобразованы в кварц-скаполит-амфибол-анкеритовые породы. Гнездово-вкрапленное и прожилковое кобальтовое оруденение имеет наложенный характер. Величина вкрапленников от долей мм до 2-3 см, мощность прожилков 0,5-0,7 см. В пределах зоны по бортовому содержанию кобальта 0,1% выделено несколько линзо-штокообразных, реже пластообразных рудных тел, приуроченных к местам пересечения субширотных и субмеридиональных тектонических зон. Минеральные типы руд — кобальтиновый, кобальтсо-держащий арсенопиритовый, пирит-пирротиновый с уранинитом (линзы до 1х13 м) при среднем содержании урана — 0,116% и тория — 0,007%.

Урановая минерализация, представленная мелкими вкраплениями уранинита в амфиболе и пирите, также приурочена к скарнам, а в их пределах локализуется в сульфидизированных (пирит, пирротин, халькопирит, сфалерит, галенит, молибденит, борнит, кобальтин)

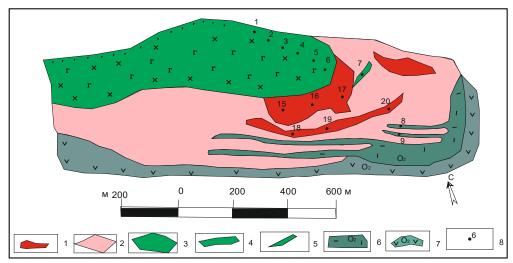


Рис. 2. План опробования Владимировского кобальтового месторождения.

1 — рудные тела с кобальтовой минерализацией; 2 — скарны амфибол-гранатовые и гранат-пироксеновые; 3 — неразделённые габбро, монцогаббро, габбро-диориты, монцодиориты, диориты, диоритовые порфириты; 4 — мелкозернистые габброэндоконтакта; 5 — дайки монцогаббро; 6 — туфы риолитов, 7 — плагиоклазовые порфириты; 8 — места отбора проб и их номера.

зонах дробления. Наиболее крупная урановорудная зона прослежена на 150 м при ширине 10-15 м. Содержание урана варьирует от следов до 0,49%. Содержание кобальта в рудах варьирует от следов до 7,43% при среднем по месторождению - 0,5%. Запасы кобальта по двум рудным телам по категориям $B+C_1+C_2$ на глубину 120 м составляют 941 т.

Владимировское месторождение, вероятно, относится к семейству месторождений пятиэлементной формации и характеризуется рудной минерализацией, связанной как с габброидами (Co, Ni), так и с кислым магматизмом (Mo, U, P3Э).

Важным показателем связи кобальтового оруденения с базитовым магматизмом являются повышенные содержания в рудах элементов платиновой группы. На основе большой коллекции кобальтовых руд из разных типов Со месторождений Алтае-Саянского региона, содержание платиноидов в рудах достигает (г/т): Pt = 1,0, Pd = 1,65, Rh = 0,014 [Третьякова, 2011]. В рудах большинства кобальтовых месторождений преобладает Pd. В наибольших количествах он присутствует в высокотемпературных Co-As рудах (до 1,08-1,65 г/т), отличающихся повышенными содержаниями Cu, Mo, Au. К их числу относятся руды Владимировского месторождения, поэтому они проанализированы на золото и платиноиды.

ПЕТРОГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОРОД ВЛАДИМИРОВСКОГО МАССИВА

 $\it \Gamma$ аббро залегает в подошве штока тёмной окраски, массивное, от офитовой до долеритовой структуры. Состав (%): плагиоклаз – 65, ортопироксен – 20, клинопироксен – 5, оливин – 5, роговая обманка – 10. Акцессории включают магнетит, титаномагнетит, лейкоксен. Ортопироксен (гиперстен) наблюдается в виде неправильных зёрен, замещается роговой обманкой. Клинопироксен определяется авгитом, слегка окрашен в буроватый цвет. Оливин образует овально-округлые выделения в виде агрегатов. Некоторые такие агрегаты окружены каймой рудного минерала.

Плагиоклаз представлен 2 генерациями. Плагиоклаз 1 — битовнит (№ 70-71), выделяется в виде крупных кристаллов таблитчатой формы, сильно соссюритзирован. Плагиоклаз 2 генерации таблитчатой и призматической форм, местами нацело соссюритизирован.

Монцогаббро залегают на габбро и характеризуются серой, тёмно-серой окраской. Структура монцонитовая, местами переходящая в призматическизернистую. Состав (%): плагиоклаз -35, калиевый полевой шпат -15, авгит -35, роговая обманка -10, эпидот -5.

Акцессории: магнетит, титаномагнетит, лейкоксен, апатит. Плагиоклаз призматической формы соссюритизирован и относится к андезину An₃₈₋₃₉ с узкой каёмкой альбит-олигоклаза. Авгит образует ксеноморфные зёрна и замещается эпидотом. Обыкновенная роговая обманка гипидиоморфна и также замещается эпидотом.

Диориты обнаруживаются выше монцогабброидов и имеют тёмно-серый цвет. Структура призматическизернистая. Состав (%): плагиоклаз – 64-61, роговая обманка – 35, эпидот – 3-5. Среди акцессориев отмечены апатит, магнетит, титано-магнетит, ортит. Плагиоклаз призматической формы, слабо соссюритизирован, полисинтетически сдвойникован, по составу варьирует от олигоклаза до андезина. Обыкновенная роговая обманка длиннопризматическая, часто идиоморфная, замещается эпидотом.

Мониодиоримы встречаются среди диоритов. Это зеленовато-тёмно-серые породы среднекристаллические, гипидиоморфнозернистой микроструктуры. Состав (%): плагиоклаз (An) с номерами от 31 до 48-67, моноклинный пироксен (авгит) -15, калиевый полевой шпат -15, эпидот -3. Спектр акцессорных - апатит, магнетит, титаномагнетит, циркон.

Химический состав породных типов приведен в табл. 1.

В целом породы штока характеризуются несколько повышенными концентрациями палладия и золота, в особенности в более основных породах и дайках монцогаббро.

TAS-диаграмма демонстрирует переход в составе штока от известково-щелочных габброидов к монцогаббро и от диоритоидов к монцодиоритам (рис. 3).

На диаграмме $Na_2O - K_2O$ породы штока локализуются в полях известково-щелочной и шошонитовой серий, а туфы риолитов — в ультракалиевой серии (рис. 4).

На спайдер-диаграммах наблюдаются максимумы по калию для всех породных типов

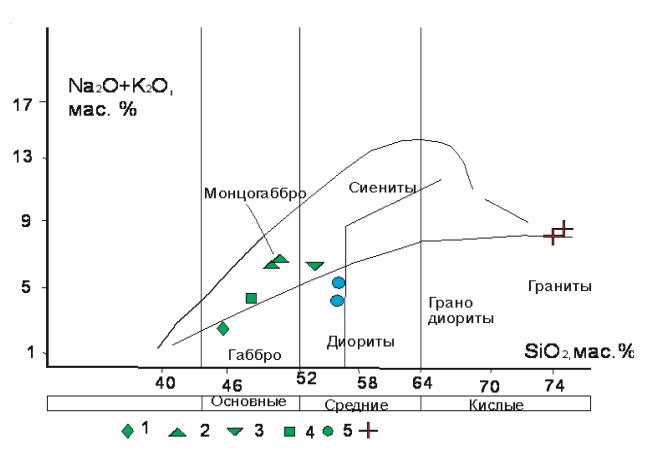


Рис. 3. Петрохимическая диаграмма диагностики горных пород в координатах SiO_2 – (Na_2O+K_2O) для пород Владимировского штока и вмещающих туфов риолитов. 1 — габбро, 2 — монцогаббро, 3 — габбро-диорит, 4 — дайка монцогаббро, 5 — диориты и диоритовые порфири-

ты, 6 — туфы риолитов.

1. Состав интрузивных пород Владимировского массива и вмещающих туфов риолитов (оксиды – в %, элементы – в г/т)

	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-10
SiO ₂	49,8	44,1	49,1	56,3	58,6	52,2	48,5	75,1	74,4	56,0
TiO ₂	1,44	1,98	1,09	1,43	1,47	2,13	1,24	0,015	0,092	0,92
Al_2O_3	19,0	13,6	19,8	14,9	16,2	15,1	15,8	13,2	14,3	15,2
Fe ₂ O ₃	2,66	3,9	2,98	3,14	3	3,35	2,54	0,53	0,99	2,89
FeO	6,59	11,7	6,64	7,41	4,86	8,95	9,47	0,25	0,44	7,71
MnO	0,16	0,22	0,17	0,2	0,19	0,21	0,22	0,026	<0,01	0,28
MgO	4,43	7,54	3,77	2,64	2,14	3,78	7,04	0,21	0,51	4,39
CaO	5,53	9,1	4,49	4,01	3,17	5,37	6,55	0,44	0,26	4,21
Na ₂ O	4,26	2,07	3,86	5,91	7,01	5,61	3,93	<0,1	1,03	2,99
K ₂ O	1,86	0,91`	3,4	0,62	0,39	<0,1	0,56	8,84	5,79	0,51
P_2O_5	0,28	0,18	0,32	0,55	0,58	0,23	0,1	<0,05	< 0,05	0,16
loi	3,32	3,41	3,48	1,86	1,79	2,15	3,11	1,15	2,06	3,95
\sum_{i}	100,0	100,0	99,8	99,8	100,0	100,0	100,0	99,9	100,0	100,0
V	209	580	172	101	86	307	299	<2,5	8,6	230
Cr	1,74	16,5	2,52	<1	<1	1,87	68,1	2,87	10,8	44,9
Со	25,3	60,9	25,7	19,4	13,9	40,6	39,2	0,76	2,74	34,9
Ni	8,67	37,2	6,26	<1	<1	8,23	50,7	1,57	5,21	40,1
Cu	16,6	85,8	34,8	3,37	<1	10,6	50,3	<1	4,52	17,2
Zn	69,7	89,9	75,1	88,3	66,2	84,8	135	9,37	351	114
Rb	24,6	21,2	45	11	9,2	4,12	17	218	170	12,3
Sr	547	335	518	269	239	118	317	183	70,6	280
Nb	2,52	1,89	3,18	6,57	6,59	3,19	1,18	6,4	13,5	2,61
Cs	1,42	2,5	1,89	1,42	0,55	2,26	0,87	0,9	2,31	0,72
Ba	312	288	494	204	128	44,2	187	1720	628	198
Pb	<1	1,25	1,48	1,53	<1	1,78	3,22	2,56	14,8	3,42
Th	0,61	0,46	0,57	1,72	1,55	0,54	0,45	8,13	10	0,99
La	6,75	4,69	8,07	17,3	13,6	7,66	4,12	35,8	25,7	5,8
Ce	16,1	11,5	18,7	40,4	34,5	21,5	11	72,2	50,5	13,2
Pr	2,47	1,58	2,74	5,79	4,95	3,53	1,79	8,6	5,95	1,75
Nd	11,8	8,33	13,3	25,1	22,3	17,5	8,97	31,1	20,4	9,0
Sm	3,58	2,76	3,91	7,21	7,12	5,5	3,01	6,67	4,84	2,52
Eu	1,19	0,95	1,51	1,91	1,82	1,72	1,08	0,59	0,92	0,98
Gd	3,55	3,22	4,48	8,21	7,09	6,97	3,37	5,36	4,1	3,26
Tb	0,57	0,57	0,76	1,3	1,15	1,33	0,64	0,73	0,75	0,58
Dy	4,27	3,87	4,86	8,73	7,93	9,05	4,46	3,5	4,69	3,9
Но	0,87	0,71	0,94	1,87	1,63	2,02	1,0	0,56	0,9	0,89
Er	2,48	2,3	2,75	5,83	4,98	5,7	2,99	1,51	2,66	2,45
Tm	0,4	0,35	0,49	0,81	0,8	0,94	0,46	0,18	0,38	0,38
Yb	2,54	2,1	2,72	5,74	5,31	6,22	3,47	1,21	3,14	2,86
Lu	0,35	0,27	0,32	0,77	0,71	0,83	0,4	0,13	0,37	0,37
Y	23,6	20,1	25,3	50,8	43	52,2	28,9	18,8	28	24,2
Ga	18	16	20	18,8	15,7	20,8	16,4	12,6	13,9	16,5
Zr	65,3	41,6	62	174	171	150	59	48	68,7	65
Sc	20,9	38	17,2	17,9	18,3	30,4	40,1	2,91	4,41	31,9
Hf	1,81	1,29	1,76	4,88	4,66	4,35	1,93	2,66	2,76	1,8
Ta	0,14	<0,1	0,16	0,43	0,48	0,24	<0,1	1,23	1,09	0,14
Mo	<0,6	<0,6	<0,6	<0,6	<0,6	<0,6	<0,6	<0,6	<0,6	<0,6
Be	1,11	<1	<1	1,83	1,11	<1	<1	1,18	2,0	1,29
W	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,59	1,9	<0,5
U	0,3	0,24	0,3	0,82	0,7	0,23	0,2	2,87	3,68	0,26
Li	28,6	22,9	18,4	10,9	7,82	11,1	32,6	2,51	11,4	29
Ag	0,015	<0,01	0,014	0,022	0,019	0,011	0,03	<0,01	0,023	0,011
Ru	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002

	B-1	B-2	B-3	B-4	B-5	B-6	B-7	B-8	B-9	B-10
Rh	<0,002	<0,002	<0,002	0,0033	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
Pd	0,0097	0,0067	0,012	0,011	0,0096	0,012	0,0083	0,004	0,0028	0,0085
Ir	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
Pt	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
Au	0,0032	<0,002	0,004	<0,002	0,0029	0,0023	0,0094	<0,002	<0,002	0,0038
∑REE	80,52	63,3	90,85	181,77	156,89	142,67	75,66	186,94	153,3	72,14
TE _{1,3}	0,98	1,02	1,0	0,99	1,01	1,03	1,02	1,03	1,07	0,95
Eu/Eu*	1,02	0,98	1,11	0,76	0,78	0,86	1,04	0,3	0,62	1,06
(LaYb) _N	1,75	1,47	1,95	1,99	1,69	0,81	0,78	19,6	5,4	1,34
Nb/Y	0,11	0,09	0,13	0,13	5,6	0,02	0,04	0,34	0,48	0,11
Zr/Y	2,8	2,07	2,45	1,42	3,98	2,87	2,04	2,55	2,45	2,68

Примечание. Анализы выполнены: силикатный на главные компоненты химическим методом и для микроэлементов - методом ICP-MS и ICP-AESв лабораториях ВСГЕИ (г. Санкт-Петербург) и ИМГРЭ (г. Москва). Прочерки – анализы не проводились. N- элементы нормированы по [Anders, Grevesse]. $TE_{1,3}$ – тетрадный эффект фракционирования P3Э (среднее между первой и третьей тетрадами) по [Irber,]; $Eu^* = (Sm_N + Gd_N)/2$. Породы массива: B-1, B-3 – монцогаббро; B-2 – габбро; B-4 – диорит; B-5 – монцодиорит; B-6 – монцогаббродиорит; B-7 – дайка монцогаббро; B-8, B-9 – туфы риолитов, B-10 – диоритовый порфирит.

и минимумы по титану и европию для туфов риолитов (рис. 5). В координатах La-Nb породные типы Владимировского штока локализуются в области астеносферного источника, а туфы риолитов – в поле литосферного источника (рис. 6).

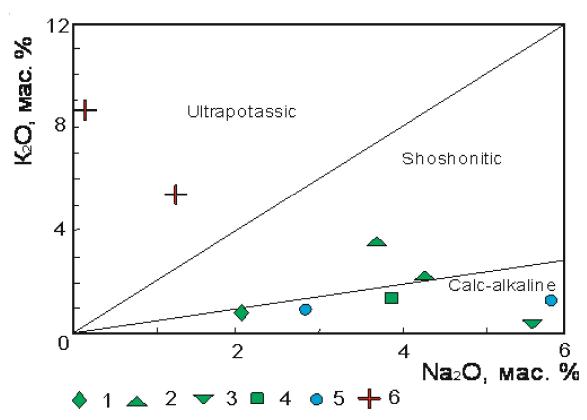
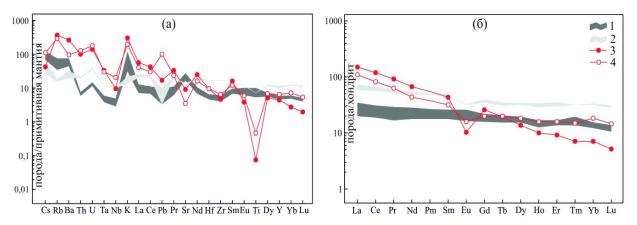
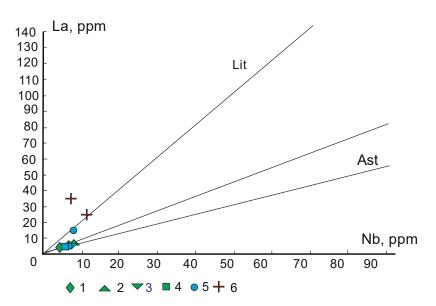




Рис. 4. Диаграмма K_2O-Na_2O по [Davidson et al., 2007] для интрузивных пород Владимировского штока

Серии пород: Calc-alkaline – известково-щелочная, Shoshonitic – шошонитовая, Ultrapotassic – ультракалиевая. Остальные условные обозначения — на рис. 3.

Рис. 5. Мультиэлементныедиаграммы.для пород Владимировского штока и туфов. 1 – габброиды (В-1, В-2, В-3); 2 – диоритоиды (В-4, В-5), 3-4 – туфы кислого состава: 3- В-8, 4 – В-9.

Рис. 6. Диаграмма La - Nb по [Putirka, 2007] для габброидов Владимировского массива. Границы астеносферно производных лав Бассейнов и Хребтов по [DePaolo, 2000]: Lit – литосферы, Ast - астеносферы. Остальные условные обозначения — на рис. 3.

ОПРЕДЕЛЕНИЯ АБСОЛЮТНОГО ВОЗРАСТА

U–Рь изотопное датирование циркона (SHRIMP II) проведено по 3 пробам: из монцогаббро, дайки монцогаббро, туфов риолитов из вмещающих пород.

Проба В-1, монцогаббро.

Цирконы — коричневые, прозрачные идиоморфные и субидиоморфные кристаллы, часто со сколами, включениями и трещинками, и их обломки. Длина 50-200 мкм, KV = 1,2-3. В КЛ цирконы имеют свечение от слабого до яркого. Зональность примерно в 40% кристаллов тонкая магматическая с элементами секториальности. В остальных кристаллах — её следы и пятнистая зональность, приуроченная к зонам перекристаллизации, включениям и трещинкам. По результатам U-Pb датирования получен конкордантный возраст $455,4\pm6,1$ млн лет, (рис.7); содержание U = 145-691 г/т, Th = 81-650, Th/U = 0,37-1,24.

Проба В-7, дайка монцогаббро.

Цирконы — светло-коричневые, прозрачные идиоморфные и субидиоморфные кристаллы, часто со сколами, включениями и трещинками, и их обломки. Длина 80-180 мкм, КУ

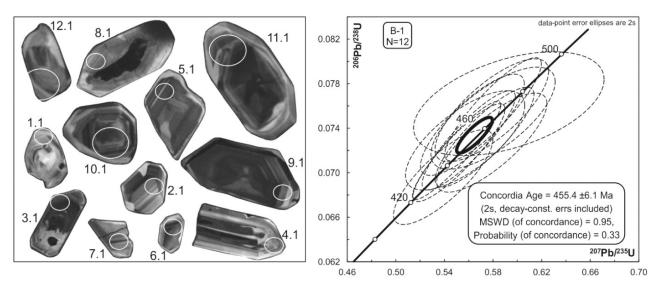


Рис. 7. Катодолюминесцентные изображения и U-Pb возраст циркона из монцогаббро штока.

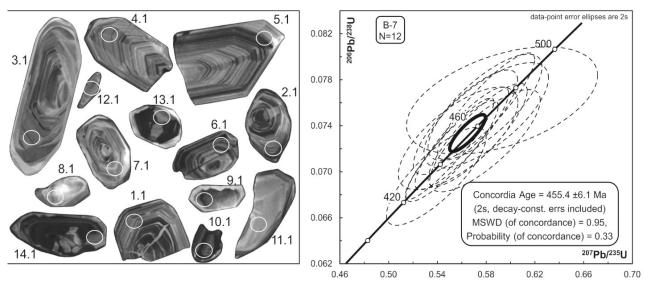


Рис. 8. Катодолюминесцентные изображения и U-Pb возраст циркона из дайки монцогаббро.

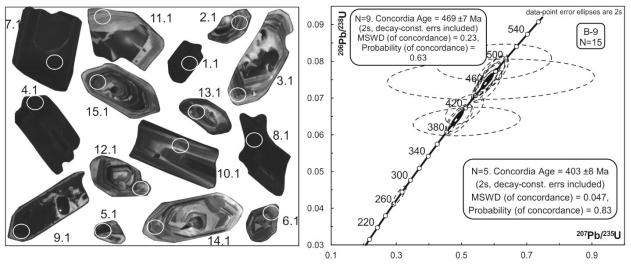


Рис. 9. Катодолюминесцентные изображения и U-Pb возраст циркона из туфов риолитов.

=1,5-3. Один кристалл практически овальный, с шагреневой поверхностью. В КЛ цирконы имеют свечение от слабого до яркого. Примерно в 40% кристаллов зональность четко выраженная, тонкая магматическая с элементами секториальности (1.1,2.1,3.21,4.1,5.1,6.1,7.1). В остальных кристаллах зональность выражена менее явно (10.1), до практически её отсутствия (8.1,9.1,11.1,12.1). Также присутствуют кристаллы с пятнистой зональностью, приуроченной к структурным нарушениям (13.1,14.1). Овальный кристалл с шагреневой поверхностью имеет слабое свечение и секториальную зональность. По результатам U-Pb датирования получен конкордантный возраст $458,8\pm5.7$ млн лет (рис. 8), содержание U=97-750 г/т, Th=58-532, Th/U=0.38-1.45.

Проба В-9, туф риолита из вмещающих пород Владимировского интрузива.

Цирконы коричневые двух типов:

- I тип прозрачные и полупрозрачные трещиноватые обломки крупных (50-150 мкм) длиннопризматических кристаллов;
- II тип прозрачные и полупрозрачные, часто со сколами, идиоморфные и субидиоморфные, более короткопризматические кристаллы со сколами и их обломки, длина 50-150 мкм. КУ = 1,5-3.

В КЛ цирконы I типа имеют крайне слабое свечение и следы магматической зональности. Цирконы II типа имеют свечение от умеренного до яркого, хорошо выраженную осцилляторную зональность с элементами секториальности, нарушенную в зонах трещинок и включений.

По результатам U-Pb датирования:

- для цирконов I типа (7.1, 1.1, 10.1, 4.1) получен конкордантный возраст 403,0 \pm 8,2 млн лет, содержание U = 473-2339 г/т, Th = 138-735, Th/U = 0,21-0,32;
- для цирконов II типа (5.1, 3.1, 12.1, 13.1, 15.1, 6.1, 11.1, 14.1, 2.1) получен конкордантный возраст 469,1 \pm 7,4 млн лет (рис.9), содержание U = 145-866 г/т, Th = 81-788, Th/U = 0.58-0.99.

Конкордантный возраст циркона $469,1\pm7,4$ млн лет из туфов риолитов показал возраст вмещающих пород для Владимировского интрузива. Более молодой возраст цирконов $403,0\pm8,2$ млн лет указывает на наложенный циркон раннедевонского возраста, возможно, связанного с кислым магматизмом раннего девона.

Для определения соотношений изотопов самария и неодима выполнено 2 анализа: монцогаббро и туфов риолитов. Сведения о содержаниях элементов, соотношениях изотопов и возрасте протолита приведены в табл. 2.

Эпсилон Nd в монцогаббро несколько повышен (5,04) и близок к таковым интрузий региона Алтая среднепалеозойской консолидации. Nd-модельный возраст протолита туфов риолитов составляет 1172 млн лет, характерный для транзитной зоны от среднепалеозойской консолидации к Алтае-Монгольскому террейну [Kruk, Rudnev, 2001].

На диаграмме соотношений $\varepsilon Nd(T)$ — $^{147}Sm/^{144}Nd$ монцогаббро располагаются выше состава хондритовых метеоритов по самарию и ниже — по неодиму (рис. 10). В то же время, туфы риолитов по анализируемым показателям локализуются в поле синорогенных гранитоидов. На диаграмме $\varepsilon Nd(T)$ — Deposial or intrusive ages монцогаббро тяготеет к области палеозойской ювенильной коры и линии деплетированной мантии, а туфы риолитов близки к составу хондритовых метеоритов (рис. 11).

2. Определения изотопов самария, неодима и модельного возраста протолита

№ п/п	Названия пород	Возраст, млн лет	Sm, _{Γ/T}	Nd, r/τ	¹⁴⁷ Sm/ ¹⁴⁴ Sm	¹⁴³ Nd/ ¹⁴⁴ Nd	+ - 2S	εNd(0)	εNd(T)	TDM	TDM2
1	Монцо- габбро	458,8	3,999	11,75	0,1748	0,512872	8	4,56	5,04		
2	Туф риолита	469,1; 403	5,105	23,27	0,1329	0,51253	8	-2,11	1,18	1172	1066

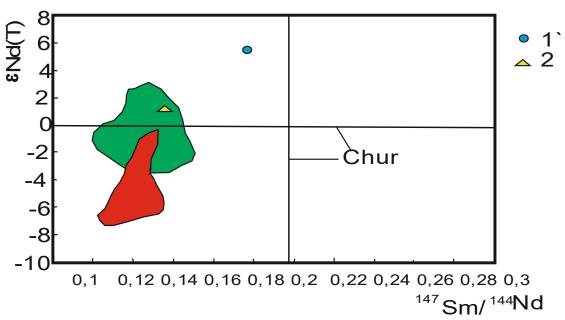
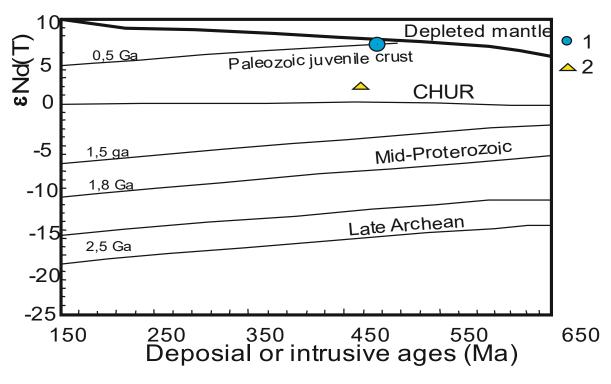



Рис. 10. Диаграмма $\varepsilon Nd(T) - {}^{147}Sm/{}^{144}Nd$ для монцогаббро Владимировского штока и вмещающих туфов риолитов.

1 – монцогаббро, 2 – туфы риолитов.

Линии CHUR – составы хондритовых метеоритов; зелёное поле – синорогенные гранитоиды, красное поле – ранне-среднепалеозойские метаосадочные породы по [Zhao et al., 1993; Chen, Jahn, 2001].

Puc. 11. Диаграмма $\epsilon Nd(T)$ — Deposinalorintrusiveagesпо [Chen, Jahn, 2001] для монцогаббро и туфов риолитов.

1 – монцогаббро, 2 – туфы риолитов.

Таким образом, положение изотопных спектров самария и неодима на диаграммах и отношения 143 Nd/ 144 Nd, ранжирующиеся от 0,51253 в туфах риолитов и 0,512872 в монцогаббро, дают отчётливые свидетельства в пользу того, что под Коргонским прогибом в раннем палеозое существовала изотопно отличающаяся земная кора, близкая к деплетированной мантии.

3. Химический состав руд Владимировского месторождения (оксиды – в %, элементы – в г/т)

	_		· -		· -	_	<u> </u>			
G:0	1	2	3	4	5	6	7	8	9	10
SiO ₂	37,1	37,7	35,7	34,4	-	-	-	-	-	-
TiO ₂	0,82	0,61	0,65	0,7	-	-	-	-	-	-
Al ₂ O ₃	12,0	8,64	8,5	9,6	-	-	-	-	-	-
Fe ₂ O ₃	12,2	7,36	8,4	8,1	-	-	-	-	-	-
FeO	6,95	10,4	9,5	9,3	-	-	-	-	-	-
MnO	0,08	0,26	0,5	0,4	-	-	-	-	-	-
MgO	11,8	1,87	2,8	3,1	-	-	-	-	-	-
CaO	7,33	21,1	20,6	21,6	-	-	-	-	-	-
Na ₂ O	4,36	0,86	1,3	1,5	-	-	-	-	-	-
K ₂ O	0,89	2,3	3,4	3,2	-	-	-	-	-	-
P_2O_5	0,05	0,12	0,76	0,8	1.67	-	71.0	-	-	- 02.6
V	46,9	95,0	55,6	65,7	167	69,6	71,8	201	98,7	82,6
Cr	61,3	57,1	76,9	97,8	570	90	193	891	117	110
Co	6600	903	9670	11260	90600	64000	20600	29200	25700	20100
Ni	1970	26,8	2350	2870	5480	23800	4870	3020	3900	2590
Cu	625	17	1056	1245	8,18	23,4	166	50,1	569	21,9
Zn	68,6	32,1	126	143	12,9	44,7	37,7	45,8	51,5	37,2
Rb	13,3	40,2	15,7	16,3	19,9	30,4	43,2	20,5	48,5	13,3
Sr	143	81,8	150	154	252	135	136	250	94	210
Nb	8,31	5,83	10,6	9,6	3,35	5,37	7,3	7,32	8,58	7,21
Cs	0,8	0,44	1,5	1,2	0,31	0,28	1,59	0,96	1,17	0,18
Ba	65,6	357	124	134	102	247	85,3	48,4	99,1	55,7
Pb	11,4	4,3	135	187	5,98	11,7	8,08	4,07	15,9	3,94
Th	1,19	3,77	2,3	3,2	12,8	7,59	12,8	5,89	11,1	2,75
La	2,63	169	2,76	3,1	6,19	208	166	92,3	8,26	11,1
Ce	5,93	224	17,0	33,2	13,9	310	261	152	20,6	23,9
Pr Nd	1,06	21,5	1,2	2,5 26,8	2,02	27,8 32,6	23,8 67,2	14,8 45,1	2,93	3,44
Sm	5,36 1,42	67,5 7,72	10,4	6,5	8,65 2,1	4,69		4,66	13,6 3,15	15,9
		1,88	2,2	1,0	0,25	-	4,49		0,64	3,22
Eu Gd	0,14 1,31	9,49	0,4 5,6	6,9	2,57	0,41 4,5	0,41	0,41	2,96	0,45 2,94
Tb	0,26	0,92	4,3	8,7	0,5	0,63	4,26 0,55	4,42 0,68	0,47	0,44
Dy	1,98	4,82	3,6	4,5	4,33	3,06	2,64	5,06	2,92	2,93
Но	0,47	0,85	1,03	1,1	1,18	0,72	0,57	1,36	0,62	0,65
Er	1,39	2,5	2,2	2,1	4,67	2,49	1,59	4,95	1,87	2,17
Tm	0,28	0,32	0,4	0,55	0,83	0,35	0,26	0,76	0,26	0,32
Yb	1,67	2,2	2,1	3,2	6,39	3,13	1,79	4,49	2,11	2,6
Lu	0,21	0,32	0,25	0,3	0,89	0,42	0,24	0,84	0,29	0,3
Y	12,1	24,1	18,5	20,7	39,2	22,9	16,1	38,6	17,8	19
Ga	7,81	15,8	10,6	12,3	6,01	6,89	8,17	10,7	10,1	8,63
Zr	95,6	88,7	10,0	12,3	35,2	76,3	45	75,4	151	112
Sc	1,63	8,71	12,6	17,9	8,91	6,56	12,4	19,7	14,8	10,7
Hf	2,34	2,42	3,4	4,1	1,11	2	1,92	2,25	3,63	2,51
Ta	0,36	0,4	0,43	0,5	<0,1	0,21	0,36	0,27	0,39	0,42
Mo	2620	3,53	1957	1870	9,9	3,21	536	36,5	44,5	7,5
Sb	8,83	2,31	104,6	112	-	-	-	-	-	-
Sn	0,9	2,12	3,4	3,3	-	-	_	_	_	_
Be	1,99	1,0	2,6	2,9	1,88	<1	1,48	2,31	<1	1,48
W	1,13	8,16	4,5	4,1	<0,5	1,14	0,74	0,7	2,36	0,84
U	9,59	12,1	12,7	13,1	10,4	10,4	21,1	15,6	128	13,1
Li	16,6	15,9	16,7	17,2	12,6	18	38,4	33,1	42,2	9,72
Ge	0,68	2,47	5,7	6,3	-	-	-	-		
Ag	0,08	0,031	2,8	3,2	-		-		_	-
Bi	2,72	0,031	10,6	15,7		-	_		_	_
	4,14	0,23	10,0	13,7		_		_		

Окончание таблицы 3.

	1	2	3	4	5	6	7	8	9	10
Ru	ı	ı	ı	ı	<0,002	<0,002	0,011	<0,002	<0,002	0,23
Rh	1	ı	ı	ı	<0,002	<0,002	0,086	<0,002	<0,002	0,29
Pd	-	ı	ı	ı	<0,002	<0,002	0,051	<0,002	<0,002	0,055
Ir	1	ı	ı	ı	<0,002	<0,002	0,013	<0,002	0,0025	0,088
Pt	•	ı	ı	ı	<0,002	<0,002	0,0069	<0,002	<0,002	0,013
Au	ı	ı	ı	ı	<0,002	<0,002	0,0052	<0,002	<0,002	0,023
∑ РЗЭ	36,21	537,1	71,94	120,9	93,67	621,7	550,9	350,4	78,48	89,36
Eu/Eu*	0,31	0,68	0,34	0,46	0,33	0,27	0,29	0,28	0,64	0,44
$TE_{1,3}$	0,97	0,86	1,48	1,94	0,98	1,22	0,95	0,93	1,0	0,92

Примечание. $Eu^* = (Sm_N^+ Gd_N^-)/2$. Прочерки – анализы не проводились. 1 – карбонат-гранат-актинолитовые метасоматиты с кобальтином и молибденитом; 2 – карбонат-гранат-актинолитовые метасоматиты с кобальтином; 3, 4 – гранат-пироксеновые скарны с кобальтином и молибденитом; 5-6 – скарны с арсенопиритом, кобальтином, данаитом; 7 – скарны с пиритом, арсенопиритом, кобальтином, молибденитом; 8-10 – скарны с пиритом, пирротином, арсенопиритом, данаитом.

НОВЫЕ ДАННЫЕ ПО ГЕОХИМИЧЕСКИМ ОСОБЕННОСТЯМ РУД ВЛАДИМИРОВСКОГО МЕСТОРОЖДЕНИЯ

Геохимия руд месторождения проанализирована на основе 10 проб, отобранных в разное время. Результаты их сведены в табл. 3.

Помимо повышенных концентраций платиноидов и золота в рудах отмечаются и значительные содержания РЗЭ. Суммарные концентрации РЗЭ в рудах варьируют от 36,1 до 621,7 г/т. При этом в составе РЗЭ резко преобладают лёгкие над тяжёлыми. В протолочках с повышенными содержаниями РЗЭ установлен монацит, ассоциирующий с флюоритом. Оба минерала кристаллизовались в заключительную стадию. В рудах месторождения проявлен тетрадный эффект фракционирования РЗЭ (М- и W-типы), что указывает на активную роль различных летучих компонентов, таких как F, CO₂, H₂O.

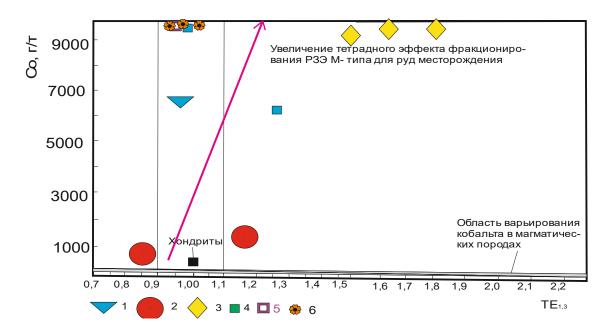
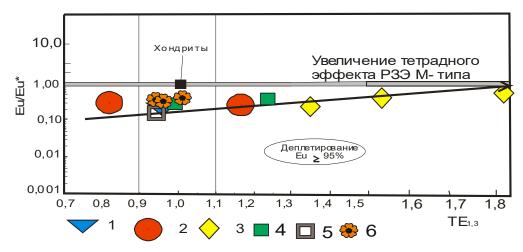



Рис. 12. Диаграмма Co – TE_{1,3} для руд Владимировского месторождения.

1 – карбонат-гранат-актинолитовыеметасоматиты с кобальтином и молибденитом; 2 – карбонат-гранат-актинолитовыеметасоматиты с кобальтином; 3 – гранат-пироксеновые скарны с кобальтином и молибденитом; 4 – скарны с арсенопиритом, кобальтином, данаитом; 5 – скарны с пиритом, арсенопиритом, кобальтином, молибденитом; 6 – скарны с пиритом, пирротином, арсенопиритом, данаитом.

Рис. 13. Диаграмма Eu/Eu* – TE_{1,3} для руд Владимировского месторождения. Условные обозначения – на рис. 12.

На диаграмме Co - TE $_{1,3}$ виден тренд увеличения содержаний кобальта с увеличением значений ТЭФ РЗЭ М-типа (рис. 12). Известно, что проявление ТЭФ РЗЭ М-типа обусловлено активностью фторидных комплексов в растворах. Следовательно, увеличение концентраций кобальта в рудах коррелируется с содержанием фтора в рудных гидротермальных растворах и, следовательно, он переносился в виде кобальт-фторидных комплексов.

Физико-химическую обстановку формирования руд и проявления ТЭФ РЗЭ возможно определить путём проведения анализа соотношений Eu/Eu* и TE_{1,3}, как это было сделано для месторождений Кызыл-Тау в Монголии [Гусев, 2015] и Кумирского месторождения в Горном Алтае [Гусев, Гусев, 2014]. На диаграмме Eu/Eu* — TE_{1,3} тренд увеличения значений ТЭФ РЗЭ М-типа происходит со слабым увеличением наклона Eu/Eu* к хондритовым значениям (рис. 13).

Сравнение величин отношений Eu/Eu^* для приведенных данных показывает, что чем выше указанное отношение, тем выше кислотность среды, согласно рядам кислотностищёлочности А.А. Маракушева [Маракушев, 1976] для ряда элементов Sm, Gd, Eu в водносероводородных растворах при стандартных условиях. Следовательно, тренд изменения соотношений Eu/Eu^* и $TE_{1,3}$, а также и концентраций кобальта, для руд Владимировского месторождения связан с повышением кислотности среды кристаллизации.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Ранее считалось, что вмещающие Владимировский интрузив породы относятся к коргонской свите раннего-среднего девона. Полученные данные позволяют рассматривать вмещающие вулканогенно-осадочные породы среднеордовикскими.

Следует отметить, что по северной окраине Коргонского прогиба закартированы ещё несколько интрузивов, отнесённых к майорскому комплексу (Тимофеевский, Кириловский, Еловский и другие более мелкие, а также дайки), которые имеют весьма близкий состав породных типов к Владимировскому интрузиву. Кроме того, абсолютный возраст анорогенных лейкогранитов Кумирского штока (421±16 млн лет) также более древний, чем вмещающие его вулканогенно-осадочные образования кумирской раннедевонской свиты.

Эти данные позволяют предположить, что по северной части Коргонского прогиба распространены вулканогенно-осадочные разрезы ордовика и, возможно, силура, которые ранее относились к девону. Если при последующем проведении и опробовании Тимофеевского и Кириловского штоков и вмещающих их пород получатся аналогичные цифры возрастов, то логично должна ставиться задача нового картирования значительной части территории листа M-45-VII.

В связи с этим резко меняются представления на металлогению этого региона. Как указано выше, весьма специфический набор геолого-промышленных типов оруденения и набор металлов, связанных с интрузиями северной периферии Коргонского прогиба, дают основание на пересмотр металлогенической роли магматизма указанной полосы Коргонского тектонического блока.

Литература

*Гусев А.*И. Некоторые аспекты геохимии минералов TR-вольфрамового месторождения Кузыл-Тау (Западная Монголия) // Успехи современного естествознания, 2015, № 1, с. 209-215.

Гусев А.И., Гусев Н.И. Некоторые аспекты геохимии минералов Кумирского скандийуран-редкоземельного месторождения Горного Алтая // Успехи современного естествознания, 2014, № 12, c. 560-566.

Маракушев А.А. Термодинамические факторы образования рудной зональности скрытого оруденения на основе зональности гидротермальных месторождений. – М: Наука, 1976. - C. 36-51.

Уваров А.Н., Кузнецов С.А., Гладких Л.А., Родченко С.А., Юрьев А.И. Государственная геологическая карта Российской Федерации масштаба 1:200 000. Издание второе. Серия Алтайская. Лист М-45-VII. Объяснительная записка. – Москва-Санкт-Петербург, 1999. - ТГФ Южсибгеолкома, 1999. – 205 с.

Шокальский С.П., Бабин Г.А., Владимиров А.Г., Борисов С.М. Корреляция магматических и метаморфических комплексов западной части Алтае-Саянской складчатой области. — Новосибирск: Изд-во СО РАН, филиал «Гео», 2000.-187 с.

Третьякова И.Г. Возрастные рубежи формирования гидротермального кобальтового оруденения Алтае-Саянской складчатой области и его соотношения с магматизмом. – Автореферат дисс. на соиск. уч. ст. к.г.-м.н. Новосибирск, 2011. – 20 с.

Anders E., Greevesse N. Abundences of the elements: meteoric and solar // Geochim. Cosmochim. Acta., 1989, v. 53, p. 197-214.

Chen B., Jahn B.-M. Geochemical and isotopic study of sedimentary and granitic rocks from thr Altai orogeny (NW China) and tectonic implications // Continental Growth in the Phanerozoic: Evidence from Central Asia. – Novosibirsk.-, Publishing House of SB RAS. Department "GEO", 2001. – P. 14-17.

Davidson J., Turner S., Handley H., Macpherson C., Dosseto A. Amphibol "sponge" in arc crust? // Geology, 2007, v. 35, p. 787 –790.

DePaolo D.J., Daley E.E. Neodymium isotopes in basalts of the southwest Basin and Range and lithosphere thinning during continental extention // Chemical Geology, 2000, v. 169, p. 157-185.

Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim. Cosmochim. Acta, 1999, v. 63, № 3/4, p. 489-508.

Kruk N.N., Rudnev S.N., Vystavnoi S.A., Palrsskiy S.V. Sr-Nd isotopic systematics of granitoids and evolution of continental crust of the western part of Altai-Sajan fold region // Continental Growth in the Phanerozoic: Evidence from Central Asia. – Novosibirsk: Publishing House of SB RAS. Department "GEO", 2001. – P. 68-72.

Putirka K., Busby C.J. The tectonic significance of high-K2O volcanism in the Sierra Nevada, California // Geology, 2007, v. 35, p. 923-926.

Vigneresse J.L. The role of discontinuous magma inputs in felsic magma and ore generation // Ore geology Reviews, 2007, v. 30, p. 181-216.

Zhao Z.H., Wang Z.G., Zou T.R., Masuda A. Progress of solid-earth sciences in northern Xinjiang. – Beijing: Science Press, 1993. – P. 239-266.