ОСОБЕННОСТИ МАГМАТИЗМА ЧОЙСКОГО ЗОЛОТОРУДНОГО ПОЛЯ

Н.И. Гусев, А.И. Гусев¹

Всероссийский геологический институт им. А.П. Карпинского, г. Санкт-Петербург ¹Алтайский гос. гум.-пед. ун-т им. В.М. Шукшина, г. Бийск

Общие сведения. Чойское рудное поле расположено в северо-восточной части Синюхинского золоторудного узла в 20 км северо-восточнее Синюхинского месторождения. Синюхинский рудный узел охватывает северную часть Уймено-Лебедской структурно-формационной зоны и кроме Синюхинского включает несколько золоторудных полей: Ашпанакское, Ишинское, Чойское.

Крупное по запасам Синюхинское медно-золоторудное месторождение-лидер эксплуатируется с 50-х годов прошлого века. Структура его рудного поля (55 км²) обусловлена надинтрузивной позицией заливообразного плаща рудовмещающих вулканогенных и карбонатных пород усть-семинской свиты (C_2) над пологой кровлей Синюхинского интрузивного массива. Последовательность внедрения интрузивных пород имеет гомодромно-антидромный характер. Гомодромная последовательность от габбро до гранита представлена нормальной известково-щелочной серией с преобладанием кварцевых диоритов. Антидромная ветвь фиксируется по более позднему внедрению даек умеренно-щелочных (шошонитовых) базальтоидов, монцодиоритов и монцонитов [Гусев, Гусев, 2012, 2020]. Все интрузивные образования относятся к окисленной (магнетитовой) серии. Золотое оруденение присутствует в виде золото-медно-скарнового, жильного золото-сульфидно-кварцевого и кварцево-штокверкового золото-малосульфидного.

В строении *Чойского рудного поля* участвуют ороговикованные и скарнированные терригенно-карбонатные отложения тандошинской (\mathfrak{C}_{2-3}) и ишпинской (\mathfrak{O}_1) свит (рис. 1). Они прорваны Чойским гранитоидным массивом, Бийским субвулканическим массивом кварцплагиоклазовых порфиров и роями даек долеритов, диоритов, гранит-порфиров и полевошпатовых лампрофиров известково-щелочной серии [Гусев, Гусев, 1998, 2014, 2016].

Рудная минерализация Чойского рудного поля представлена золото-теллуридным и молибденит-шеелитовым в скарнах, стратиформным медно-цинк-золото-теллуридным и жильным кварц-золото-теллуридным оруденением. Золотое оруденение не имеет четкой пространственной связи со скарнами. Оно развивается по зонам дробления и брекчирования как в скарнах, так и в гранитоидах в виде кварцевых жил, кварц-карбонатных и кварцкарбонат-хлоритовых прожилков и гнезд с золото-сульфидной минерализацией. Минеральный состав этих образований близок между собой и представлен преимущественно низкотемпературными золото-сульфидными и золото-теллуридными парагенезисами. Общее содержание сульфидов не превышает первые проценты. Сульфиды выделяются в основном в виде рассеянной мелкой и тонкой вкрапленности и не образуют крупных скоплений и гнезд. Золото в рудах Чойского месторождения встречается в виде мелких включений в сульфидных и теллуридных минералах в кварцевых прожилках, а также в срастании с рудными минералами. Размер выделений составляет сотые и десятые доли миллиметра. По термометрическим исследованиям, гомогенизация первичных газово-жидких включений в кварце из рудоносных жил происходит в жидкую фазу при температурах 126-150°C; в кальците — при 105-128°С [Гаськов и др., 2010].

В локализации наиболее богатой рудной минерализации определяющую роль играют конгломераты на границе несогласия между тандошинской и ишпинской ситами, по которым образована Центральная скарновая залежь. Она имеет пластообразную форму мощностью от нескольких метров до 24 м. Протяжённость по простиранию более 1 км. Длина по падению варьирует от 400 м до более 1 км. Скарны гранатовые, пироксен-гранатовые, пироксен-эпидотовые, гранат-волластонитовые с более редкими скаполитом и везувианом. На диаграммах составов скарновых минералов Чойского участка гранат тяготеет к гроссуляру,

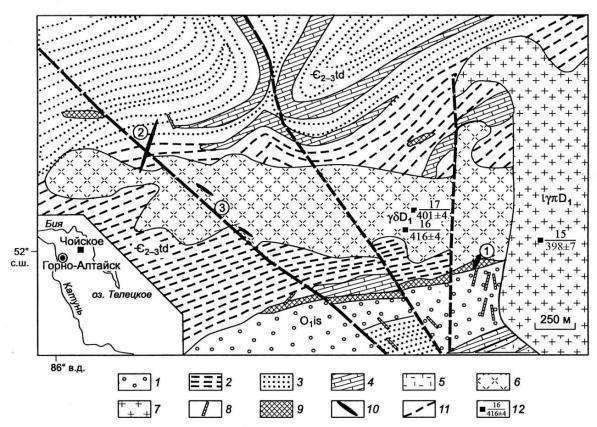


Рис. 1. Схематическая геологическая карта Чойского рудного поля.

(Составлена авторами с учётом неопубликованных материалов Л.И. Шепеленко, Ю.И. Земцова, С.Г. Шушумкова, а также И.В. Гаськова и др. [2010]).

1 – песчаники, конгломераты, гравелиты, известняки, редко туфы кислого состава ишпинской свиты (O_1 is); 2-4 – тандошинская свита ($C_{2\cdot3}$ td): 2 – алевролиты, 3 – песчаники, 4 – известняки; 5 – туфы кислого состава; 6 – гранитоиды Чойского массива; 7 – лейкогранит-порфиры Бийского массива; 8 – дайки, 9 – скарны, 10 – рудные тела (в кружочках на схеме их номера), 11 – разрывные нарушения; 12 – места датирования пород U-Pb методом (SHRIMP II): в числителе номер пробы, в знаменателе – конкордантный возраст в млн лет.

пироксен к геденбергиту [Гусев, Гусев, 1998], что в большей степени характерно для собственно золоторудных скарнов [Меіпетt, 1995]. В восточной части Центральной скарновой залежи залегают Первое и Второе золоторудные тела, которые локализуются в средней части залежи. Наиболее богатое оруденение приурочено к участкам кварц-эпидотовых жил и прожилков, а также гнёзд метасоматитов кварц-эпидот-хлоритового состава, развитым по гранатовым скарнам. Форма Первого рудного тела столбообразная, мощность его варьирует от 1 до 3,6 м, длина по простиранию составляет 70 м, по падению – 350 м. В рудах преобладают тетрадимит, молибденит, пирит и золото, которое ассоциирует с тетрадимитом. Меньшим распространением пользуются магнетит, халькопирит, борнит, халькозин, пирротин. Содержания золота варьируют от 5 до 288 г/т, среднее содержание по рудному телу 23,2 г/т. Золото свободное, встречается в кварце в тесном парагенезисе с тетрадимитом и с более редкими хедлеитом, теллуровисмутитом и самородным висмутом. В районе Центрального рудного тела обнаружены флюидо-эксплозивные брекчии, тяготеющие к дайкам порфирового типа, по составу варьирующие от долеритов до гранит-порфиров и лампрофиров. Трубообразное тело брекчий имеет округлую форму и измеряется несколькими десятками метров.

Золото тяготеет к области распространения флюидо-эксплозивных брекчий, а ураганно высокие концентрации локализуются в так называемом "кварцевом ядре" с обильными гнёздами и линзочками фисташково-зелёного эпидота. Здесь же карьером вскрыта дайка интенсивно березитизированных гранит-порфиров с розетками турмалина размером до 1 см.

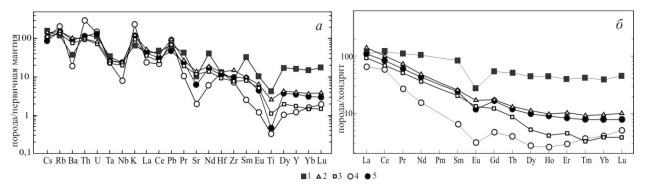
В северной приконтактовой части Чойского интрузива в междуречье левого и правого

истоков ручья Смородинового выявлено стратиформное медно-цинково-золото-теллуридное оруденение. Здесь по керну скважин в мраморах отмечены кварц-эпидот-кальцитовые метасоматиты с прожилками и жеодами пирита, пирротина, сфалерита и вкрапленностью халькопирита, тетрадимита, золота, самородного висмута.

ИНТРУЗИВНЫЕ ОБРАЗОВАНИЯ

Чойский интрузивный массив занимает центральную позицию в рудном поле. Он имеет размеры 5×1 -0,5 км и вытянут в широтном направлении. В составе Чойского интрузива, который относится к югалинскому комплексу (D_1), выделяется несколько фаз внедрения от габбро до гранитов в гомодромной последовательности, среди которых преобладают ($\sim 50\%$) гранодиориты III фазы. Восточная часть Чойского рудного поля интрудирована Бийским массивом лейкогранит-порфиров размером $3 \times 1,7$ км и вытянутым субмеридионально (рис. 1). Он относится к саганскому (байгольскому) вулканическому комплексу (D_2). В восточной части рудного поля были изучены гранитоиды Чойского и Бийского массивов.

Минеральный состав. Наиболее распространенные в Чойском массиве породы варьируют по структуре от равномерно-среднезернистых гранодиоритов (зональный $Pl_{38} - 45 \%$, Q-25, Or-15, Bt-10, Amp-5, Mgt-2, II-1, Ap-0,5) до неравномерно-среднезернистых гранит-порфиров. Порфировые выделения (10 %) сложены агрегатами биотита размером 0,3-0,5 см в поперечнике и зональным плагиоклазом (15 %). Минеральный состав гранит-порфиров: $Pl_{22}-40 \%$, Q-30, Or-20, Bt-9, Amp-1. В гранодиоритах встречаются шарообразные меланократовые автолиты, по составу соответствующие кварцевым диоритам ($Pl_{45}-45 \%$, $Pl_{12}-25$), среджат жилы (мощностью до 20 см) скарнированных лейкогранитов ($Pl_{45}-45 \%$), $Pl_{12}-25$, сростки геденбергита с титанитом и магнетитом, единичные зерна зонального ортита и турмалина). В Бийском массиве для изотопных исследований была отобрана проба турмалинсодержащих кварц-плагиоклазовых порфиров, содержащих в тонкозернистом аплитовом матриксе около 20 % порфировых выделений размером 1-2 мм, представленных таблитчатыми выделениями плагиоклаза (15 %) и округлыми зернами кварца (5 %). Состав пород: $Pl_{15}-40 \%$, Q-35, $Pl_{12}-20$, $Pl_{15}-40 \%$,


Геохимические особенности. Гранитоиды Чойского массива, согласно классификации [Frost et al., 2001], являются магнезиальным ($Fe_{Number} = 0,53-0,67$), лейкограниты железистыми, известково-щелочными (индекс MALI = 2,3-5,62), гранодиориты – известковыми, а лейкограниты щелочно-известковыми. Большинство пород являются и метаглиноземистыми (ASI = 0.74-0.97), но гранит-порфиры и лейкограниты – слабоплюмазитовыми (ASI = 1,01). Гранодиориты и лейкограниты относятся к окисленной серии $(Fe_2O_2/(Fe_2O_2 + FeO) =$ 0,43-0,83), кварцевые диориты и гранит-порфиры – к восстановленной (0,33-0,34); большинство пород – с Na-типом щелочности (Na₂O/K₂O = 1,15-1,45), кроме лейкогранитов (0,39). Графики распределения микроэлементов в гранитоидах ведут себя в основном конформно (рис. 2): положительные аномалии, особенно сильно проявленные в лейкогранитах, отмечаются для K, Th, U, Pb, Nd, Sm, отрицательные – для Ba, Ta, Nb, Ti, P, а в кварцевых диоритах, кроме того, для Zr. Содержание P3Э наиболее высокое в кварцевых диоритах (ΣP3Э = 221 г/ т), с резко проявленным Eu-минимум (Eu/Eu* = 0,4) и низкой величиной La $_{N}$ /Yb $_{N}$ (2,77). Σ P3Э последовательно снижается: в гранодиоритах – 144 г/т, гранит-порфирах – 97 и лейкогранитах – 67, при этом продуктом наиболее дифференцированного расплава являются гранит-порфиры — $La_N/Yb_N = 23$. Гранодиориты имеют содержание висмута 0,11 г/т, во всех остальных породах его содержание ниже порога определения (<0,1 г/т). Кварцевые диориты имеют наиболее высокое содержание бора (40 г/т) по сравнению с остальными гранитоидами (4-6).

Гранит-порфиры Бийского массива являются железистыми (Fe_{Number} 0,82-0,88, mg# 12-16), известково-щелочными (индекс MALI = 5,02-6,02) и плюмазитовыми (ASI =1,09-1,40). Они принадлежат к высокоокисленной магнетитовой серии ($Fe_20_1/FeO = 0.71-1.38$; $Fe_20_1/FeO = 0.71-1.38$).

1. Химический состав интрузивных пород Чойского рудного поля (оксиды – в %, элементы – в г/т)

		лды — в 70, .			•
№№ проб	17-1	17	16	16-1	15
SiO ₂	55,2	66,8	71,9	77,1	73,6
TiO ₂	0,83	0,52	0,22	0,07	0,09
Al_2O_3	14,5	15,4	14,7	12,3	13,8
Fe_2O_3	3,18	1,87	0,73	0,62	0,70
FeO	6,50	2,44	1,40	0,13	0,98
MnO	0,38	0,11	0,03	0,02	0,02
MgO	5,65	1,65	0,67	< 0,05	0,16
CaO	7,13	4,02	2,11	0,59	1,35
Na ₂ O	2,86	3,41	4,15	2,55	3,95
K_2O	1,97	2,77	3,58	6,52	3,42
P_2O_5	0,11	0,12	0,06	<0,05	< 0,05
ппп	1,02	0,61	0,35	0,2	1,78
Сумма	99,33	99,72	99,90	100,05	99,85
Cr	247	42,4	68,3	33,5	39,5
V	149	59,6	28,3	5,33	5,02
Co	31,5	7,98	3,82	0,54	<0,5
Ni	50,9	9,58	6,22	2,51	4,05
Cu	31,7	6,15	8,87	4,98	19,2
Zn	145	61	32,8	13	24,2
Pb	10,2	10,2	14,1	13,8	6,95
Mo	4,92	1,53	2,73	2,12	1,99
Bi	<0,1	0,11	<0,1	<0,1	<0,1
Ag	<0,5	0,03	0,12	0,04	0,07
Rb	70,7	81	92,1	123	95,7
Ba	237	492	698	122	599
Sr	206	279	234	39,8	125
Nb	15,2	13,1	15,4	5,29	15,1
Ta	1,86	0,82	0,96	0,87	1
Zr	95,50	157	80,4	77,6	106
Hf	3,71	3,86	2,59	3,7	3,12
Y	69,7		7,25	4,99	15,6
		17,4			
Th	10,1	7,94	7,47	23,7	8,89
U	2,21	1,64	1,47	2,76	2,83
As	2,33	2,48	2,91	3,0	51,6
В	40	5,64	4,56	4,04	4,66
La	27,7	34,5	22,6	15,9	26,9
Ce	75,1	63,7	43	36,6	52,6
Pr	10,8	6,99	4,88	2,61	5,85
Nd	50,4	23	17,2	7,43	20,6
Sm	13,1	3,97	3,23	0,99	3,74
Eu	1,6	0,99	0,78	0,18	0,69
Gd	11,2	3,6	2,57	0,97	3,47
Tb	1,94	0,5	0,33	0,15	0,45
Dy	11,5	2,91	1,34	0,68	2,51
Но	2,53	0,56	0,24	0,15	0,52
Er	6,78	1,75	0,75	0,48	1,39
Tm	1,09	0,24	0,08	0,09	0,2
Yb	6,73	1,66	0,66	0,7	1,35
Lu	1,19	0,26	0,1	0,13	0,2
Σ REE	221,66	144,63	97,76	67,06	120,47

Примечание. Чойский массив: 17-1 — кварцевый диорит, 17 — гранодиорит; 16 — гранит-порфир; 16-1 — лейкогранит; Бийский массив: 15 — кварц-плагиоклазовый порфир.

Рис. 2. Мультиэлементные диаграммы для пород Чойского рудного поля. Чойский массив: 1 — кварцевый диорит, 2 — гранодиорит; 3 — гранит-порфир; 4 — лейкогранит; 5 — Бийский массив, кварц-плагиоклазовый порфир. При нормировании использован состав первичной мантии и хондрита по [Sun, McDonough, 1989].

 $(Fe_2O_3+FeO)=0.42-0.58)$ с Nа-типом щелочности $(Na_2O/K_2O=1.15-1.97)$. По содержанию микроэлементов ($\Sigma P39=120~\Gamma/T$) и форме графика распределения P39 они близки к гранодиоритам Чойского массива, но имеют более «глубокий» Еи-минимум (Eu/Eu* = 0.59) и отличаются более высоким содержанием As ($51.6~\Gamma/T$) по сравнению с гранитоидами Чойского массива ($3-7~\Gamma/T$).

Характеристика цирконов и результаты определения возраста. Цирконы в гранодиоритах Чойского массива (пр. 17) бесцветные, прозрачные, призматические с коэффициентами удлинения (Ку) от 3,4 до 1. В катодолюминесценции (КЛ) преобладает секториальная зональность, которая ближе к краям кристаллов иногда сменяется концентрической. Такая зональность не характерна для гранитоидов, но чаще встречается в породах основного и среднего состава. Содержания: U = 151-461 г/т, Th = 44-197 г/т, Th/U=0,47. Конкордантное значение возраста, составляющее по 11 измерениям 401 ± 4 млн лет, характеризуется низким среднеквадратичным отклонением (СКВО) -0,043, высокой вероятностью конкордантности (ВК) -0,84 и принимается в качестве времени кристаллизации гранодиоритов.

Цирконы из гранит-порфиров Чойского массива (пр. 16) подобны цирконам из гранодиоритов и представлены однотипными субидиоморфными короткопризматическими и столбчатыми зернами, в КЛ с секториальной и тонкой концентрической зональностью. В цирконах невысокие содержания: U = 99-294 г/т и Th = 37-122 г/т, Th/U = 0,33. Большинство измерений имеет высокую отрицательную дискордантость от -10 до -25 %. Три измерения с низкой дискордантостью 0-6 % дают значения возраста 410-417 млн лет, из них измерение в точке 6.1 с дискордантостью 0 % имеет содержание U = 199 г/т, Th = 56 г/т, Th/U = 0,29 и возраст 415,8±6,1. С этим значением совпадет конкордантное значение возраста по 10 измерениям — 416±4 млн лет, но оно характеризуется сравнительно большой величиной СКВО (1,18) и низкой ВК (0,28). Полученный результат менее достоверный, и поэтому при определении возраста массива лучше опираться на датировку гранодиоритов 401±4 млн лет.

Цирконы из кварц-плагиоклазовых порфиров Бийского массива (пр. 15) бесцветные, желтоватые, буроватые или розоватые, субидиоморфные или удлиненно-призматические, КУ = 2-4. Характерна концентрическая зональность в средней и краевой части кристаллов. Содержание U в цирконах сравнительно высокое -381-1090 г/т, содержания Th варьируют от 75 до 530 г/т, отношение Th/U = 0.20-0.67. Конкордантный возраст по 9 измерениям составляет 398 ± 7 млн лет, характеризуется относительно небольшим СКВО (0.72) и ВК (0.40) и может рассматриваться как время кристаллизации кварц-плагиоклазовых порфиров Бийского массива.

Sr-Nd изотопная систематика интрузивных пород. Изотопные системы Sr, Nd, Rb и Sr, изученные в гранит-порфирах Чойского массива (пр. 16) и кварц-плагиоклазовых порфирах Бийского массива (пр. 15), сопоставлены с аналогичными изотопными системами интрузивными образованиями Синюхинского рудного поля (табл. 3, рис. 4).

Для магматических образований Чойского рудного поля, как и для Синюхинского, пред-

2. Результаты U-Рb измерений в цирконе

№ п/п	<u>№№</u> точек	²⁰⁶ Pb _c	U ppm	Th ppm	²³² Th / ²³⁸ U	²⁰⁶ Pb* ppm	(1) Возраст ²⁰⁶ Pb/ ²³⁸ U млн лет		(1) ²⁰⁷ Pb* / ²³⁵ U	±%	(1) ²⁰⁶ Pb* / ²³⁸ U	±%	Коррел. оши -бок
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Проба 15													
1	15.1	0,30	871	225	0,27	49,7	413,1	± 7,5	0,51	3,3	0,0662	1,9	0,577
2	15.2	0,39	781	160	0,21	43,9	407,2	± 7,5	0,498	3,4	0,0652	1,9	0,556
3	15.3	0,89	499	117	0,24	26,7	386	± 7,6	0,451	5,1	0,0617	2	0,397
4	15.4	0,29	740	150	0,21	41,2	404,3	± 7,4	0,49	3,8	0,0647	1,9	0,502
5	15.5	0,73	578	197	0,35	32,5	405,5	± 7,6	0,492	4,3	0,0649	1,9	0,445
6	15.6	1,48	812	530	0,67	41,2	365	± 6,8	0,435	6,2	0,0583	1,9	0,309
7	15.7	0,30	1090	353	0,33	60,4	401,7	± 7,3	0,483	3,6	0,0643	1,9	0,525
8	15.8	1,22	381	75	0,20	21,3	401,7	± 7,8	0,491	7,2	0,0643	2	0,278
9	15.9	0,52	495	104	0,22	27,4	401,1	± 7,6	0,482	5,2	0,0642	2	0,376
10	15.10	0,25	924	281	0,31	50,7	398,6	± 7,3	0,495	3,1	0,0638	1,9	0,608
	Проба 16												
1	16_1.1	0,82	144	37	0,27	8,71	436,5	± 7,2	0,521	6,5	0,0701	1,7	0,261
2	16_1.2	0,35	140	66	0,49	7,96	410,2	± 6,5	0,503	6,1	0,0657	1,6	0,268
3	16_2.1	0,69	149	47	0,33	8,5	410,4	± 6,6	0,474	8,1	0,0657	1,7	0,204
4	16_3.1	0,25	159	46	0,30	9,47	430,1	± 6,6	0,517	4,7	0,069	1,6	0,338
5	16_4.1	0,62	181	56	0,32	10,2	406,2	± 6,2	0,474	6,5	0,065	1,6	0,245
6	16_5.1	0,46	99	29	0,30	5,73	417,1	± 7	0,513	8,5	0,0668	1,7	0,203
7	16_6.1	0,00	199	56	0,29	11,4	415,8	± 6,1	0,506	3,1	0,0666	1,5	0,491
8	16_7.1	0,23	223	54	0,25	12,8	417,4	± 6	0,499	3	0,0669	1,5	0,501
9	16_8.1	0,31	137	47	0,35	7,86	416,8	± 6,5	0,498	3,7	0,0668	1,6	0,429
10	16_9.1	0,38	294	122	0,43	16,4	403,1	± 6,1	0,477	6,1	0,0645	1,6	0,256
						П	роба 17	Ī					
1	1.1		225	69	0,32	12,3	399	± 6	0,530	9,4	0,0638	1,5	0,2
2	2.1		333	197	0,61	18,4	401	± 5	0,489	5,6	0,0642	1,3	0,2
3	3.1		293	156	0,55	16	398	± 5	0,522	6,7	0,0636	1,4	0,2
4	3.1RE	0,25	165	80	0,50	9,16	404	± 7	0,438	16,4	0,0646	1,8	0,1
5	4.1	0,26	157	74	0,49	8,55	396	± 8	0,433	19,9	0,0634	2,0	0,1
6	5.1	0,17	242	122	0,52	13,2	397	± 6	0,468	8,4	0,0635	1,5	0,2
7	6.1		151	74	0,51	8,39	404	± 7	0,542	12,9	0,0647	1,8	0,1
8	7.1		152	44	0,30	8,36	399	± 7	0,448	11,1	0,0638	1,7	0,2
9	8.1	0,33	336	195	0,60	18,8	407	± 5	0,484	7,1	0,0652	1,3	0,2
10	9.1	0,45	237	112	0,49	13,1	402	± 6	0,459	9,8	0,0643	1,5	0,2
11	10.1		461	152	0,34	25,6	404	± 6	0,490	6,1	0,0646	1,4	0,2

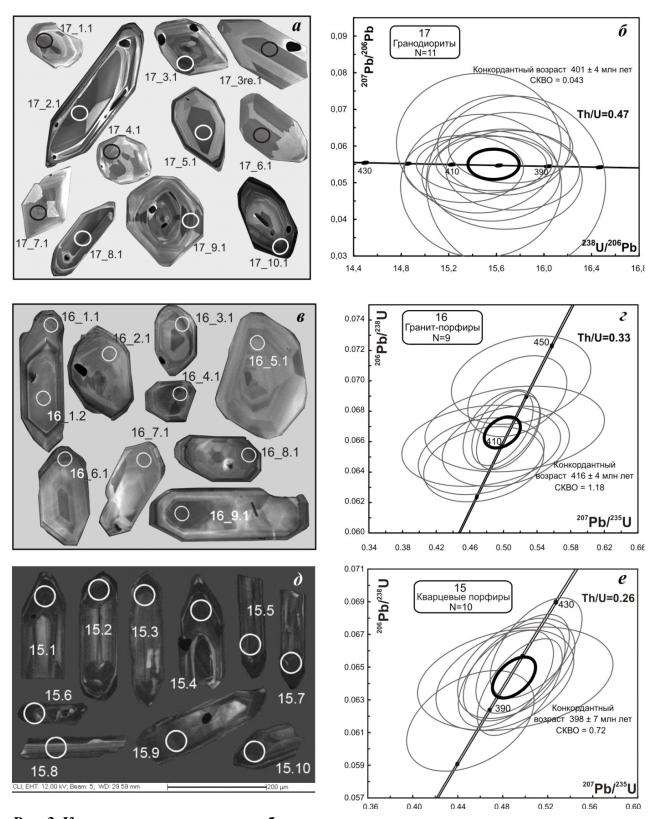


Рис. 3. Катодолюминесцентные изображения циркона с точками и номерами анализов (a, ε, δ) и его возраст $(\delta, \varepsilon, \varepsilon)$ для гранитоидов Чойского рудного поля.

a, б – гранодиориты, b, r – гранит-порфиры Чойского интрузива, d, e - кварц-плагиоклазовые порфиры Бийского интрузива.

Примечания к таблице 2.

Прочерк — содержание ниже предела чувствительности. Ошибки приведены для интервала 1σ . Pb_c и Pb^* указывают обыкновенную и радиогенную составляющие соответственно. Ошибка калибровки стандарта - 0,5 %. (1) Поправка на обыкновенный свинец введена по измеренному 204 Pb. Коррел. ошибок - корреляция ошибок при определении отношений 207 Pb*/ 235 U - 206 Pb*/ 238 U.

3. Изотопный состав самария, неодима, рубидия и стронция

No	№	Возраст	Sm,	Nd,	¹⁴⁷ Sm/	¹⁴³ Nd/	$\varepsilon_{Nd}(T)$	$T(Nd)_{DM}$	Rb,	Sr,	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$\varepsilon_{Sr}(T)$
ПП	проб	млн лет	Γ/T	Γ/T	¹⁴⁴ Nd	¹⁴⁴ Nd		млн лет	Γ/T	Γ/T			
1	15	400	4,60	25,6	0,1087	0,512584	3,4	820	97,91	140	2,0262	0,716180	8,68
2	16	400	3,27	17,5	0,1134	0,512626	4,0	800	94,43	266	1,0268	0,710769	12,62
3	5	397	3,87	16,3	0,1438	0,512821	6,3	721	39,36	538	0,2113	0,705630	5,64
4	9	397	6,43	25,7	0,1513	0,512846	6,4	747	44,93	633	0,2051	0,705357	2,56
5	10	270	5,45	18,6	0,1774	0,512688	1,6		14,7	272	0,1564	0,704611	-2,47
6	12	406	5,28	24,3	0,1313	0,512728	5,2	784	92,6	276	0,9695	0,709860	3,27
7	14	380	4,49	22,6	0,1202	0,512703	5,0	732	135,8	29	13,72	0,775779	- 37,71

Примечание к таблице 3. № π/π : 1-2 — Чойское рудное поле, 3-7 — Синюхинское рудное поле. 15 — кварц-плагиоклазовые порфиры Бийского масива; 16 — гранодиориты Чойского массива; 5-10 — дай-ки Синюхинского месторождения: 5 — плагиоклаз-порфировые трахидолериты, 9 — трахиандезибазальтовые порфириты, 10 — авгитовые микродолериты; 12 —гранодиориты Синюхинского массива; 14 — лейкогранит-порфиры Цыганского массива.

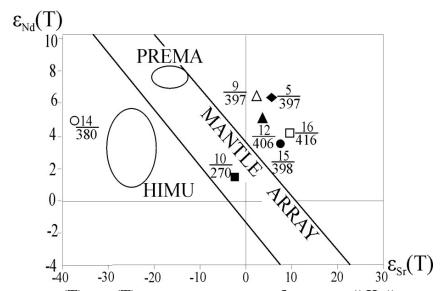


Рис. 4. Диаграмма $\epsilon_{Nd}(T) - \epsilon_{Sr}(T)$ для интрузивных образований Чойского и Синюхинского рудных полей.

Числитель – номер пробы, знаменатель U-Pb возраст в млн лет. 5-10 — дайки Синюхинского месторождения: 5 — плагиоклаз-порфировые трахидолериты; 9 — трахиандезибазальтовые порфириты, 10 — авгитовые микродолериты; 12 —гранодиориты Синюхинского массива; 14 — лейкогранит-порфиры Цыганского массива; 15 — кварцплагиоклазовые порфиры Бийского массива; 16 — гранодиориты Чойского массива.

полагается мантийный источник (єNd(T) 3,0-4,4) с позднерифейским Nd-модельным возрастом протолита. Наблюдается определенное сходство эволюции магматизма Синюхинского и Чойского рудных полей, для которых предполагается мантийный магматический источник типа PREMA, слабо обогащенный радиогенным стронцием (рис. 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Временной интервал магматизма $421\pm5-399\pm2$ млн лет на Синюхинском месторождении [Гусев, Гусев, 2012] совпадает с возрастом магматизма $416\pm4-398\pm7$ млн лет в Чойском рудном поле. Дайки внутрирудных трахидолеритов с возрастом 397 ± 2 млн лет на Синюхинском месторождении свидетельствуют о поступлении в магматический очаг порции ювенильной базитовой магмы, вероятно, повлекшем за собой формирование крупномасштабной медно-золоторудной минерализации. Для магматических образований Синюхинского и Чойского рудных полей предполагается мантийный источник (ϵ Nd(T)=3,3-6,4) с позднери-

фейским Nd-модельным возрастом протолита ($T(Nd)_{DM} = 0.7-0.8$ млрд лет) (табл. 3).

На Чойском месторождении фиксируется антидромный эпизод в развитии магматизма в виде даек долеритов и лампрофиров, развитых в районе известных рудных тел. Именно лампрофиры относятся к ильменитовой серии и занимают центральное место в поле Au-(Bi) месторождений на рис. 5. Однако не исключено, что эпитермальная золото-теллуридная минерализация связана со становлением кварц-плагиоклазовых порфиров Бийского массива (398±7 млн лет), судя по флюидо-эксплозивным брекчиям и турмалинсодержащим лей-когранит-порфирам в районе Первого рудного тела Чойского месторождения, поскольку турмалин и высокое содерждание Аs отмечались именно в кварц-плагиоклазовых порфирах Бийского массива.

Большинство интрузий, с которыми связаны золоторудные месторождения [Lang, Baker, 2001], отличается общими чертами, которые также характерны для Чойского рудного поля: 1) пространственной связью с относительно восстановленными гранитоидами (метаглиноземистые гранитоиды среднего до кислого состава) и размещением вблизи границы магнетитовой и ильменитовой серии І-типа (рис. 5); 2) углекислыми гидротермальными флюидами; 3) золото является доминирующим полезным ископаемым, но отмечаются аномально высокие содержания Ві, W, Мо, Те и/или Sb и низкие концентрации Cu, Pb, Zn; 4) низкое содержание сульфидов (<5 %) обычно восстановительного характера: арсенопирит, пирротин, пирит и отсутствие оксидов железа.

В раннем девоне магматизм Алтайской активной континентальной окраины осложнялся эпизодами рифтогенеза. Периодически возникающие трансформные обстановки, обусловленные «косой» субдукцией океанической литосферы, вызывали сдвигово-раздвиговые перемещения, разрывающие субдуцирующую океаническую литосферу и способствующие

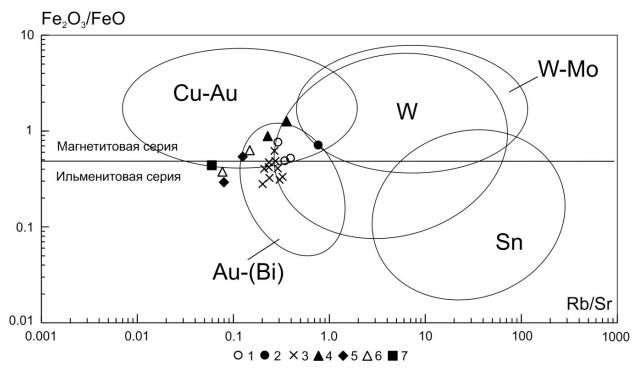


Рис. 5. Диграмма Rb/Sr – Fe_2O_3 /FeO для интрузивных образований Чойского и Синюхинского рудных полей.

1 — гранитоиды Чойского массива (пр. 16, 17, 17-1), 2 — Бийский массив (пр. 15), 3 — лампрофиры Чойского рудного поля [Гусев, Гусев, 2014], 4-7 Синюхинское рудное поле (анализы из работы [Гусев, Гусев, 2012]: 4 — Синюхинский массив (гранодиориты пр. 12 и кварцевые монцодиориты пр. 13). Дайки в Синюхинском рудном поле: 5 — трахидолериты (пр. 5) и диорит-порфириты (пр. 11), 6 — трахиандезибазальтовые (пр. 9) и лабрадоровые (пр. 6) порфириты; 7 — авгитовые микродолериты (пр. 10). Эллипсами обведены поля составов продуктивных гранитоидов по [Вакег et al., 2005]. Горизонтальная ось — степень фракционирования магмы, вертикальная — степень ее окисленности.

внедрению в разрывы астеносферных диапиров. Астеносферные окна («slab-windows»), обеспечивали проникновение мантийных расплавов, с которыми связано разнообразное эндогенное оруденение, в том числе золотое. В Синюхинском рудном поле рифтогенные дайки трахидолеритов и трахиандезибазальтов имеют соотношения изотопов Sr и Nd близкие к мантийному источнику типа PREMA, в Чойском рудном поле с рифтогенезом связаны дайки лампрофиров.

Степень окисления магмы контролирует кристаллизацию, отделение и состав магматических флюидов, перенос элементов и отложение руд [Hart, 2007]. Крупномасштабное медно-золотое оруденение Синюхинского рудного поля связанно преимущественно с окисленным типом интрузий, прорывающих вулканогенно-карбонатный разрез. В Чойском рудном поле вмещающими интрузив являются осадочные породы, содержащие органическое вещество, вследствие чего они обогащены углеродом. Плавление этих пород в области магматического очага формировало восстановленый тип магм, с которым связанно висмут-золото-теллуридное оруденение. Месторождения этого типа обычно имеют низкие (около 1 г/т) содержания Аu, запасы которого могут достигать 100-500 т [Hart, 2007]. В Чойском рудном поле поисково-оценочные работы были направлены на выявление богатых тел, аналогичных установленным в рудном столбе в скарнах, при этом потенциал рядовых для золото-теллуридных месторождений руд не оценивался.

Литература

Гаськов И.В., Борисенко А.С., Бабич В.В., Наумов Е.А. Стадийность и длительность формирования золоторудной минерализации на медно-скарновых месторождениях (Алтае-Саянская складчатая область) // Геология и геофизика, 2010, т. 51, № 10, с. 1399-1412.

Гусев А.И., Гусев Н.И. Петрология и геохимия интрузивных пород Синюхинского месторождения (Горный Алтай) // Геология и минеральные ресурсы Сибири, 2020, № 3, с. 100-109.

Гусев А.И., Гусев Н.И. Геологическое строение Чойского рудного поля Горного Алтая / Руды и металлы, 1998, № 2, с. 90 - 100.

Гусев А.И., Гусев Н.И. Петрология лампрофировых даек Чойского рудного поля Горного Алтая // Успехи современного естествознания, 2014, № 3, с. 58-63.

Гусев Н.И., Гусев А.И. Изотопно-геохимические особенности и возраст магматизма Синюхинского золоторудного поля (Горный Алтай) // Природные ресурсы Горного Алтая, 2012, № 1-2 (15), с. 23 - 32.

Гусев А.И., Гусев Н.И., Табакаева Е.М. Восстановленная интрузивно-связанная Чойская магмо-рудно-метасоматическая W-Au-Te система Горного Алтая // Международный журнал прикладных и фундаментальных исследований, 2016, № 10 (ч. 1), с. 96-101.

Baker T., Pollard P.J., Mustard R., Mark G., Graham J.L. A comparison of granite-related tin, tungsten, and gold-bismuth deposits: implications for exploration // SEG Newsletter, 2005, v. 61, p. 5–17.

Frost B. R., Arculus R. J., Barnes C. G. et al. A geochemical classification of granitic rocks / Journal of Petrology, 2001, v. 42, p. 2033-2048.

Hart C.J.R. Reduced intrusion-related gold systems // Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, n. 5, p. 95-112.

Lang J.R., Baker T. Intrusion-related gold systems: the present level of understanding // Miner. Deposita, 2001, v. 36, p. 477-489.

Meinert L.D. Compositional variation of igneous rocks associated with skarn deposits - chemical evidence for a genetic connection between petrogenesis and mineralization // Mineralogical Association of Canada, Short Course Series, 1995, v. 23, p. 401–418.

Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // In: Magmatism in the ocean basins. Eds. Saunders A.D. & Norry M.J. Geol. Soc. Special Publ., 1989, № 42, p. 313-345.