ГЕОХИМИЯ, ПЕТРОЛОГИЯ И ГЕНЕЗИС УЛЬМЕНСКОГО СИЕНИТ-ПИРОКСЕНИТ-ГАББРОВОГО КОМПЛЕКСА СЕВЕРНОГО АЛТАЯ

А.И. Гусев, Н.И. Гусев*, А.В. Одинцев

Алтайский государственный гуманитарно-педагогический университет им. В.М. Шукшина, г. Бийск *ФГУП «Всероссийский геологический институт им. А.П. Карпинского», г. Санкт-Петербург

ВВЕДЕНИЕ

Сложные плутонические комплексы, включающие в себя габброиды и породы повышенной щёлочности — сиениты, встречаются редко и привлекают к себе внимание исследователей, так как с ними связано оруденение Cu, Au, Mo, REE и других металлов [Хомичёв, Единцев, Кужельная, 2000; Аникина, Краснобаев,2017; Котельников, Макаренко, 2018]. К числу таких комплексов относится ульменский сиенит-пироксенит-габбровый (\mathfrak{C}_2), развитый в бассейнах рек Ульмень, Ушпа, Коура, Ашпанак. Он образует 3 ареала: Ульменский, Ашпанакский и Коуринский. В Легенде по АССО в составе комплекса выделено 2 фазы: 1-ая сложена габбро, габбро-пироксенитами, пироксенитами, габбро-долеритами, 2-ая включает сиениты. Дайковая фация представлена кварцевыми монцонитами, сиенит-порфирами, трахитами и предположительно лампроитами [Шокальский и др., 2000].

Цель исследования – изучить петрогеохимические особенности породных типов современными анализами и выявить их генезис.

Актуальность темы определяется пространственной связью золото-сульфидно-кварцевого, золото-медно-скарнового и других типов оруденения с дериватами ульменского комплекса в бассейнах рек Ульмень, Ушпа, Коура, Ашпанак, Верхний Каракан.

ОСОБЕННОСТИ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ УЛЬМЕНСКОГО УЧАСТКА И ПЕТРОГРАФИЧЕСКАЯ ХАРАРТЕРИСТИКА ПОРОД

В петротипическом Ульменском ареале, по нашим данным, следует выделять 3 фазы: 1 - клинопироксениты, габбропироксениты; 2 - субщелочные габбро; 3 – монцониты, кварцевые щелочные сиениты и сиениты. Клинопироксениты и габбропироксениты представляют собой наиболее раннюю самостоятельную фазу внедрения. В левом борту р. Ульмень на Центральном участке месторождения они образуют тела среди габброидов главной фазы размерами от 50х70 до 90х120 м (рис. 1). Более мелкие тела отмечены среди габброидов и в правом борту реки Ульмень в районе Западного участка месторождения (3х12 м). При этом в плане наблюдается зональное строение массивов: на западной и южной периферии обнажены клинопироксениты, далее к центру преобладающую часть составляют субщелочные габброиды главной 2-ой фазы, в центре массива появляются мелкие тела и дайки монцонитов, щелочных сиенитов и сиенитов 3-ей фазы. В северо-восточной части Ульменского рудного поля отмечаются небольшие массивы сиенитов размерами 0,3-0,25х0,5-0,6 км (Личимский и другие), в которых по периферии отмечаются монцониты и кварцевые монцониты в виде тел размерами от 5х13 до 50х90 м. Таким образом, в строении некоторых массивов ульменского комплекса наблюдается зональность, где более ранние фазы внедрения локализуются на периферии, а наиболее поздние получают развитие в центре. Такой характер зональности обусловлен особенностями эволюции глубинного очага. Известно, что в долгоживущих магматических очагах первичный расплав испытывает дифференциацию кристаллов, смешение различных по составу магм и изменение химизма. В условиях быстро протекающей дифференциации расплава пульсации внедрений отдельных фаз, достигая уровней станов-

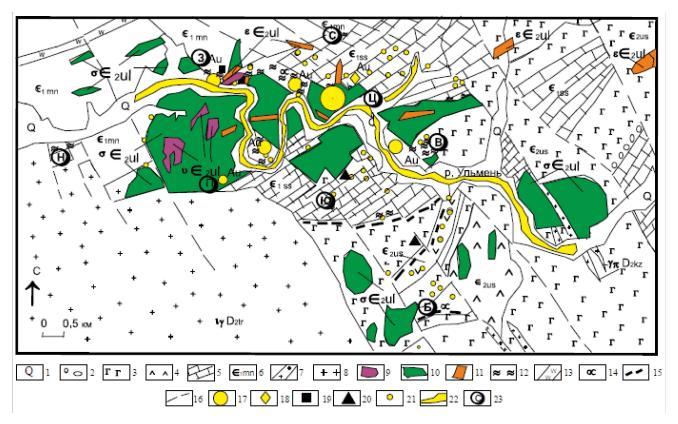


Рис. 1. Схематическая геологическая карта и золотоносность Ульменского рудного поля (составлена А.И. Гусевым с учётом материалов Ю. Тверитинова).

1 - современные аллювиальные образования; усть-семинская свита: 2 - конгломераты; 3 - лавы и туфы базальтов и трахибазальтов; 4 - лавы и туфы андезитов, трахиандезитов; 5 - известняки и мраморы сиинской свиты; 6 - алевролиты, туфы, сланцы, базальты манжерокской свиты; 7 - гранит-порфиры кызылташского комплекса; 8 - граниты, лейкограниты турочаского комплекса; ульменский комплекс: 9 - пироксениты, габбро-пироксениты первой фазы; 10 - габбро второй фазы; 11 - монцониты, кварцевые щелочные сиениты и сиениты третьей фазы; 12 - скарны; 13 - кварциты; 14 - зоны лимонитизации; 15 - зоны рассланцевания; 16 - разломы: 17 - золото-медно-скарновые руды; 18 - золото-сульфидно-кварцевые проявления; 19 - «железные шляпы» и лимонитовые «сухари»; 20 - проявления магнетита; 21 - находки золота в шлихах; 22 - россыпи золота; 23 - золотоносные участки рудного поля: Ц - Центральный; В - Восточный; 3 - Западный; К - Каменный; Ю - Южный; С - Северный; П - Первый; Н - Нижний; Б - Берёзовско-Макарьевский.

ления в земной коре, не успевали полностью закристаллизоваться, и тогда последующие фазы их легко взламывали, прорывали и располагались в области подводящего канала, то есть в центре формироващегося массива. Такой тип зональности относится к нормальному [Vigneresse, 2007], который и проявился в массивах исследуемого комплекса.

Клинопироксениты 1 фазы массивные, черной окраски, крупнозернистые, иногда до гигантозернистых. Состав (%): ортопироксен (энстатит) -10-15, клинопирксен (авгит) - 80-90, рудные минералы (хромит, магнетит, пирит, пирротин) — 5-7. Энстатит бесцветен, образует идиоморфные выделения коротко-призматической формы размерами от 0.4-0.5 до 0.8 — 0.9 см. Авгит корродирует энтстатит, слегка окрашен в зеленовато-голубоватые тона и образует гипидиоморфные и ксеноморфные зёрна, иногда близкие к длиннопризматическим выделениям размерами от 0.5х1.3 до 1х4 см.

Субщелочные габбро 2 фазы средне-крупнозернистые, тёмно-серой окраски, имеют типичную офитовую и пойкилоофитовую микроструктуры. Состав (%): роговая обманка - 40-35, плагиоклаз − 50-52, клинопироксен - 2-3, эпидот - 5-10, рудные минералы (магнетит, пирит, пирротин) - 1-2, апатит, циркон, хлорит − единичные зёрна. Плагиоклаз образует крупные призматические выделения, часто содержащие пойкилитовые вростки роговой обманки и клинопироксена. Редко сдвойникован, диагностируется лабрадором № 51-54. Почти

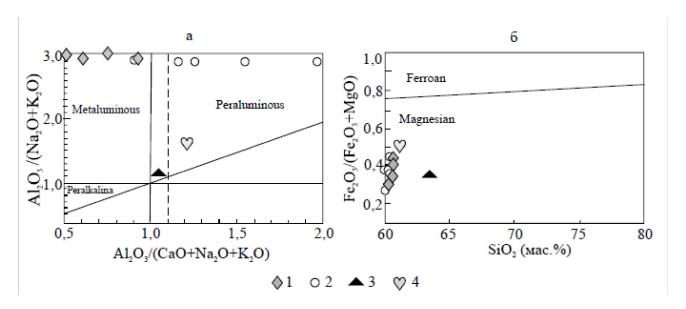


Рис. 2. Диаграммы $Al_2O_3/(Na_2O + K_2O) - Al_2O_3/(CaO + Na_2O + K_2O)$ (a) по [Maniar, 1989] и $Fe_2O_3/(Fe_2O_3 + MgO) - SiO_2$ (б) по [Villaseca, 1998] для интрузивных пород ульменского комплекса.

1 - габбро, 2 - пироксениты, 3 - кварцевые щелочные сиениты, 4 - сиениты.

повсеместно соссюритизирован. Темноцветные минералы обильны и местами их количество позволяет относить некоторые разности к меланогаббро. Клинопироксен редок и диагностируется авгитом. Он часто наблюдается в виде реликтов среди уралитовой роговой обманки. Обыкновенная роговая обманка преобладает среди темноцветных минералов. Она отчётливо плеохроирует от светло-желтовато-зеленоватой до сине-зелёной. Местами замещается эпидотом.

Кварцевые щелочные сиениты 3 фазы имеют красновато-розоватую окраску, средне-кристаллическое сложение. Микроструктуры гипидиоморфнозернистая и микроклин-пертитовая. Состав (%): озаннит - 5, роговая обманка обыкновенная - 5-7, эпидот - 2-3, плагиоклаз -10-15, микроклин - 80-85, циркон, апатит, пренит — единичные зёрна. Озаннит образует идиоморфные коротко-призматические кристаллы, плеохроирующие от стально-серого до тёмно-синего. Замещается амфиболом. Обыкновенная роговая обманка образует скопления мелких зёрен с отчётливым плеохроизмом от желтовато-зеленоватого до зеленовато-синего. Замещается эпидотом. Плагиоклаз определён олигоклазом № 11-14, местами сильно пелитизирован. Микроклин-пертит наблюдается в виде крупных изометричных выделений, нередко имеющих зональное строение. В центре их локализуется плагиоклаз (альбит), на который нарастает микроклин-пертит. Изредка отмечаются миаролитовые пустотки, инкрустированные по краям таблитчатыми кристалликами полевого шпата и пренита.

Сиениты светло-красные породы, мелкозернистые. Микроструктура гипидиоморфнозернистая. Минеральный состав (%): микроклин-пертит — 75-80, плагиоклаз - 7-10, роговая обманка — 5-9, кварц - 1-2, эпидот — 1-2, апатит, циркон, сфен — единичные зёрна. Преобладающий микроклин-пертит формирует изометричные зёрна, редко - крупные призматические выделения, имеющие зональное строение. В ядре таких кристаллов отмечается более интенсивная пелитизация. Плагиоклаз наблюдается в виде таблитчатых выделений и относится к альбит-олигоклазу с №№ 8-17. Обыкновенная роговая обманка окрашена в зеленоватосиневатые оттенки, ксеноморфна и часто замещается эпидотом.

Химический состав пород комплекса сведен в табл. 1.

Породы комплекса характеризуются повышенной общей щёлочностью и калиевостью, высоким уровнем дифференциации редкоземельных элементов (нормированные к хондриту отношения лантана к иттербию варьируют от 3,6 до 18,6). Отношение Eu/Eu* почти во всех

1. Состав интрузивных пород ульменского комплекса (оксиды в %, элементы в г/т, Au в мг/т)

	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	47,6	49,0	49,2	49,4	48,3	39,1	39,9	44,4	40,4	62,6	60,2
TiO ₂	0,82	0,78	1,18	0,93	0,94	1,09	1,48	0,95	1,05	0,07	0,38
Al_2O_3	18,1	17,2	14,3	20,4	19,6	12,5	15,5	8,85	11,7	18,0	17,8
Fe_2O_3	6,75	6,56	8,1	6,5	6,3	11,7	10,7	6,6	8,8	0,72	2,4
FeO	4,64	4,55	6,5	5,1	5,2	6,7	6,3	5,1	6,1	0,72	1,9
MnO	0,22	0,21	0,25	0,19	0,21	0,19	0,3	0,17	0,1	0,75	0,09
MgO	11,5	4,54	6,77	4,86	5,1	8,96	7,23	9,89	7,8	0,69	1,14
CaO	4,21	9,6	12,7	12,0	8,3	17,5	15,4	23,1	15,1	1,55	2,81
Na ₂ O	1,65	2,84	1,39	2,09	2,7	0,62	0,71	0,32	0,5	2,92	5,7
K ₂ O	2,55	2,42	1,95	2,14	2,1	0,02	1,02	0,32	0,7	11,6	6,03
P_2O_5	0,43	0,37	0,73	0,36	0,5	0,32	<0,5	0,19	0,7	0,05	0,03
Li	12,7	13,0	14,9	13,5	14,1	6,56	9,75	9,01	8,1	2,56	2,7
Be	2,2	2,1	2,6	<1	2,4	<1	<1	<1	<1	4,74	4,2
Sc	37,1	36,3	36,5	28,8	33,7	65,8	51,8	63,7	55,8	4,39	6,7
V	647	651	652	538	545	940	837	515	654	53	61
Cr	45,2	44,8	44,9	16,8	33,7	79,7	103	111	115	1,0	3,2
Co	50,1	49,5	50,5	36,2	43,2	57,5	64,7	43,4	56,9	1,83	3,0
Ni	26,0	25,8	25,7	19,0	26,4	47,1	47,9	27,4	48,1	2,41	2,6
Cu	20,0	23,8	23,7	68,8	20,4	173	176	58,3	179	87,8	94,6
Zn	112	99,5	103	85,2	104	87,3	108	72	98,1	26,3	31,4
Ag	0,09	0,089	0,088	0,056	0,094	0,047	0,079	0,048	0,05	0,27	0,45
Au	160	179	156	158	204	188	160	184	185	154	230
Sb	1,68	1,56	1,78	1,16	1,5	0,2	0,57	0,62	0,55	0,36	0,54
Ga	17,3	17,0	17,7	16,3	17,3	14,6	19,1	11,5	12,1	20,7	21,6
Rb	47,8	48,2	48,1	37	50,1	2,97	15,5	<2	2,5	138	193
Sr	966	765	978	828	964	855	807	407	707	263	302
Y	27,1	25,9	26,6	17,4	26,2	13,9	15,8	13,8	14,1	36,5	40,3
Zr	88,8	90,6	92,1	28,3	91,4	20,4	43,6	53,7	36,1	351	345
Nb	6,4	6,9	6,51	2,44	7,0	1,2	3,11	1,06	1,3	14,9	16,0
Sn	1,2	0,98	1,01	0,56	0,94	0,64	1,03	1,42	1,1	0,84	1,1
Cs	0,5	0,51	0,41	0,53	0,52	<0,1	0,18	<0,1	<0,1	0,42	0,5
Ba	543	487	533	345	445	102	227	14,7	112	283	486
La	29,1	27,8	28,3	9,32	22,7	5,72	6,51	5,75	7,1	96,7	46,0
Ce	55,2	53,7	54,1	19,0	47,5	12,4	14,8	14,2	15,0	141	78,5
Pr	6,9	6,2	6,86	2,56	4,9	2,35	2,22	2,31	2,3	11,9	1,8
Nd	34,2	33,6	33,8	12,8	28,5	13,2	12,6	13,4	12,8	37,6	19,1
Sm	8,01	7,83	7,98	3,69	4,7	4,17	3,78	3,92	4,0	5,43	2,8
Eu	2,4	2,16	2,35	1,22	1,1	1,21	1,14	1,23	1,1	0,68	0,51
Gd	7,9	7,5	7,6	3,7	5,7	3,68	3,51	3,84	4,1	5,38	3,9
Tb	0,99	0,85	0,97	0,56	0,76	0,49	0,54	0,47	0,55	0,76	0,75
Dy	5,03	4,87	4,94	3,06	3,6	2,61	2,82	2,69	3,1	4,48	4,2
Но	0,91	0,83	0,87	0,64	0,8	0,57	0,61	0,54	0,6	1,02	1,1
Er	2,45	2,21	2,24	1,45	2,3	1,25	1,52	1,1	1,7	3,29	4,2
Tm	0,44	0,38	0,4	0,23	0,37	0,21	0,2	0,18	0,22	0,62	0,52
Yb	2,3	2,1	2,07	1,6	2,2	1,05	1,1	0,91	`1,2	4,62	4,6
Lu	0,42	0,37	0,33	0,19	0,29	0,16	0,22	0,17	0,25	0,82	0,39
Hf	2,9	2,5	2,71	1,04	2,4	0,96	1,59	2,09	1,6	8,68	6,0
Ta	0,41	0,32	0,34	0,12	0,3	<0,1	0,19	<0,1	0,2	0,72	0,52
Pb	7,3	6,4	6,09	5,0	5,7	2,57	4,96	3,35	4,1	7,56	7,3
W	0,6	0,6	1,06	<0,5	0,7	0,6	0,82	<0,5	0,6	<0,5	1,3
Th	2,5	1,8	2,3	0,75	1,3	0,16	1,06	0,36	0,7	45,7	35,9
U	1,54	1,1	1,47	0,46	1,0	<0,1	0,86	0,59	0,5	10,1	11,3
ΣREE	156,2	150,4	152,8	60,0	125,4	49,1	51,6	50,0	54,0	350,8	208,7
$TE_{1,3}$	0,88	0,86	0,91	0,92	0,85	0,86	0,9	0,89	0,88	0,91	0,75
Eu/Eu*	0,92	0,86	0,92	1,01	0,66	0,93	0,95	0,96	0,83	0,38	0,48
(LaYb) _N	8,4	8,3	8,7	9,1	3,8	6,8	3,6	3,9	4,1	18,6	6,6
U	-,.	,-	~ , .	- ,-	-,-	-,-	-,-	- ,-	.,.		-,-

образцах менее 1 и только в одном субщелочном габброиде близко к хондритовому (1,01). Во всех породных типах, в том числе клинопироксенитах и субщелочных габбро, проявлен тетрадный эффект фракционирования (ТЭФ) РЗЭ W—типа (граничное значение 0,9).

По соотношениям оксидов главных элементов породы ульменского комплекса относятся к метаалюминиевому и пералюминиевому типам и существенно магнезиальным (рис. 2).

На петрохимической диаграмме диагностики горных пород фигуративные точки составов изучаемого комплекса попадают в область умеренно-щелочных пород (рис. 3). При этом субщелочные габброиды локализуются в области состава монцогаббро, а кварцевые щелочные сиениты – в поле сиенитов. А по соотношениям оксидов калия и кремния все породные типы образуют своеобразный тренд в области шошонитовой серии (рис. 4).

Согласно Петрографическому кодексу России, клинопироксениты можно отнести к подотряду нормально-щелочных пород и к семейству пироксенитов-горнблендитов; субщелочные габброиды – к тому же подотряду и семейству габброидов, а кварцевые щелочные сиениты к подотряду щелочных плутонических пород, семейству щелочных (бесфельдшпатоидных), сиениты – к подотряду умеренно-щелочных плутонических пород и семейству сиенитов.

ГЕОХИМИЯ И ПЕТРОЛОГИЯ МАГМАТИТОВ

На спайдер-диаграмме распределения РЗЭ формы кривых для клинопироксенитов и субщелочных габброидов весьма близки и имеют слабый отрицательный наклон вправо, указывая на обеднение тяжёлыми РЗЭ (рис. 5,а). На этих кривых европий не образует аномалий в распределении, что и подтверждается значениями параметра Eu/Eu*, варьирующего от 0,66 до 1,01 (табл. 1). Такое распределение европия на кривой и численные величины Eu/Eu* свидетельствуют о близких значениях европия к хондритовым. Иная картина распределения РЗЭ на диаграмме наблюдается для кварцевых щелочных сиенитов и сиенитов, показывая резко изрезанную форму кривых (рис. 5,6). В этом случае наблюдается слабо выраженная негативная аномалия по европию и позитивная аномалия по неодиму для сиенитов. Численные значения Eu/Eu* составляют 0,38 и 0,48, значительно отличающиеся от таковых для основных пород комплекса.

По соотношениям La/Nb и Ce/Y составы пород выстраиваются вдоль тренда смешения с корой, свидетельствуя о мантийно-коровом взаимодействии при формировании пород комплекса (рис. 6). Мантийная составляющая выявляется на диаграмме La/Sm — La, где отчётливо видно, что клинопироксениты и субщелочные габбро формировались при низкой степени частичного плавления гранатового лерцолита нормальных N-MORB срединно-океанических хребтов и в меньшей степени обогащённого мантийного компонента E-MORB (Рис. 7). А кварцевые щелочные сиениты и сиениты, как гибридные породы, не попадают ни на одну из трендовых линий плавления. Таким образом, источником субщелочных габброидов и клинопироксенитов была деплетированная истощённая мантия.

Соотношение нормированных содержаний La и Sm на концентрации этих элементов в нижней континентальной коре (La_{UCN} и Sm_{UCN}) указывает, что большая часть пород тяготеет к областям деплетированной и обогащённой мантии (рис. 8). И лишь состав кварцевого щелочного сиенита попадает в поле соотношений La_{UCN}/Sm_{UCN} , свойственных верхней коре.

Примечание к таблице 1. Анализы выполнены (силикатный на главные компоненты - химическим методом, для микроэлементов - методом ICP-MS и ICP-AES) в лабораториях ВСГЕИ (г. Санкт-Петербург) и ИМГРЭ (г. Москва). Прочерки – анализы не проводились. N – элементы нормированы по [Anders, Greevesse, 1989]. $TE_{1.3}$ – тетрадный эффект фракционирования РЗЭ (среднее между первой и третьей тетрадами) по [Irber, 1999]. $Eu^* = (Sm_N + Gd_N)/2$. Породы ульменского комплекса: 1-5 – субщелочные габбро; 6-9 – клинопироксениты; 10 – кварцевый щелочной сиенит; 11 – сиенит.

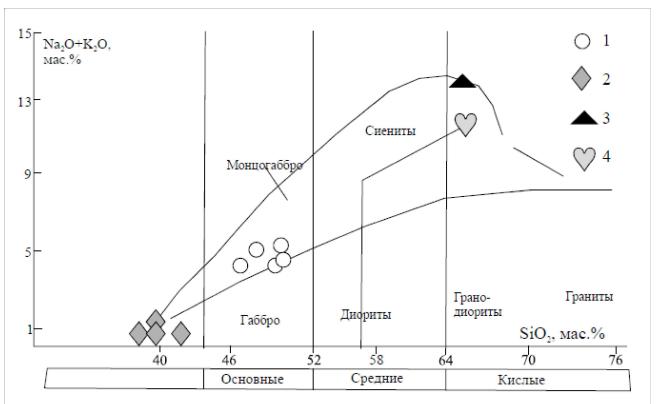


Рис. 3. Петрохимическая диаграмма диагностики горных пород в координатах SiO_2 – (Na_2O+K_2O) для пород ульменского комплекса.

1 - габбро, 2 - пироксениты, 3 - кварцевые щелочные сиениты, 4 - сиениты.

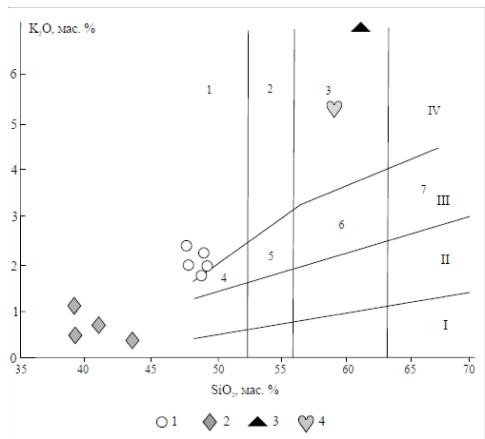


Рис. 4. Диаграмма K₂O – SiO₂ для пород ульменского комплекса.

Поля пород: 1 – абсарокит; 2 – шошонит; 3 – банакит; 4 – высоко-К базальт; 5 – высоко-К андезибазальт; 6 – высоко-калиевый андезит; 7 – высоко-К дацит по [Рессетіво, Тауют, 1976]. Серии пород: І – толеитовая; ІІ – известково-щелочная; ІІ – высоко-К известково-щелочная; IV – шошонитовая. Породы ульменского комплекса: 1 - габбро, 2 - пироксениты, 3 - кварцевые щелочные сиениты, 4 - сиениты.

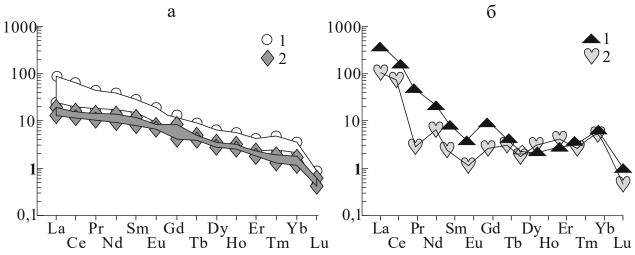


Рис. 5. Спайдер-диаграммы редкоземельных элементов для пород ульменского комп-

а – для клинопироксенитов и субщелочных габброидов; 1 - субщелочные габбро, 2 - клинопироксениты; 6 – для кварцевых щелочных сиенитов и сиенитов: 1 - кварцевые щелочные сиениты 2 - сиениты. Нормализация по хондриту выполнена по [Anders, Greevesse, 1989].

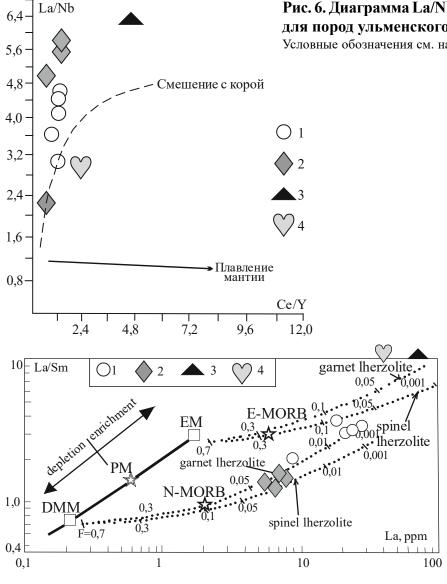
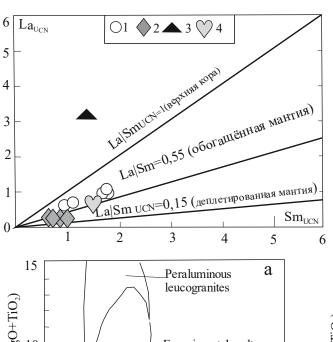



Рис. 6. Диаграмма La/Nb-Ce/Y по [Barbarin, 1999] для пород ульменского комплекса.

Условные обозначения см. на рис. 2.

Рис. 7. Диаграмма La/Sm - La по [Aldamaz et al., 2000] для пород ульменского комплекса.

DMM - деплетированный мантийный источник MORB. PM примитивная мантия; ЕМ – обогащённый мантийный источник; E-MORB и N-MORB – составы обогащённых (Е) и нормальных (N) базальтов срединно-океанических хребтов; точечные линии - тренды плавления источников DMM и EM, засечки с цифрами на точечных линиях степень частичного плавления для соответствующих мантий-100 ных источников. Остальные условные обозначения на рис. 2.

Рис. 8. Диаграмма La_{UCN}-Sm_{UCN} по [Pearce, 1996; Putirca, 2007] для габбро-идов белорецко-маркакольского комплекса.

 ${\rm La_{UCN}}$ и ${\rm Sm_{UCN}}$ - значения концентраций лантана и самария, нормализованные на верхнекоровые значения по [McLennan, 2001]. Остальные условные обозначения см. на рис. 2.

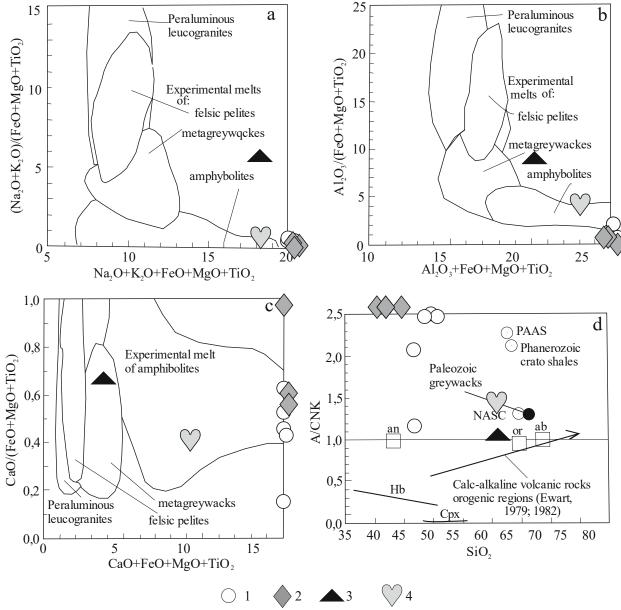
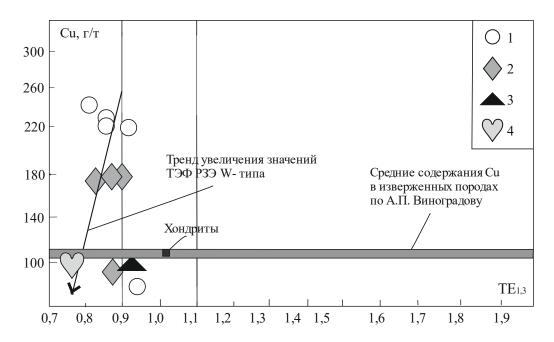
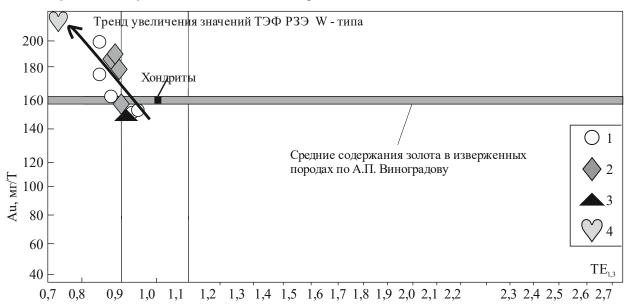




Рис. 9. Экспериментальные диаграммы.

(а), (b), (c) — диаграммы композиционных экспериментальных расплавов из плавления фельзическихпелитов (мусовитовых сланцев), метаграувакк и амфиболитов для пород ульменского комплекса; (d) — диаграмма SiO_2 — A/CNK) для пород ульменского комплекса. Тренд известково-щелочного фракционирования вулканических пород орогенных регионов, по [Ewart, 1979; Ewart, 1982]. A- Al_2O_3 , CNK — Сумма CaO, Na_2O , K_2O . PAAS — постархейская средняя австралийская осадочная порода; NASC — северо-американский континентальный сланец. Остальные условные обозначения см. на рис. 2.

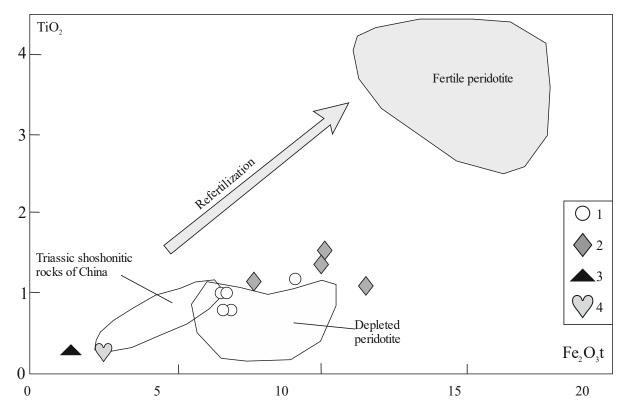

Рис. 10. Диаграмма Сu-TE_{1,3} по [Гусев, 2016] для пород ульменского комплекса. Концентрации меди в хондритах по [Wasson, 1988]. Содержания меди в изверженных породах по [Виноградов, 1962]. Остальные условные обозначения см. на рис. 2.

Рис. 11. Диаграмма $Au - TE_{1,3}$ для пород Мурзинского массива. Концентрации золота в хондритах по [Wasson, 1988]. Остальные условные обозначения см. на рис. 2.

За счёт каких коровых материалов образовались гибридные породы — кварцевые щелочные сиениты и сиениты, - можно воспользоваться экспериментальными диаграммами по плавлению осадочных, некоторых изверженных пород и метаморфических образований континентальной коры. На этих диаграммах субщелочные габброиды и клинопироксениты не попадают ни в одно из полей; в тоже время кварцевые щелочные сиениты попадают в поле граувакк, а сиениты близки к полю плавления амфиболитов (рис. 9, a, b, c). Примечательно, что на диаграмме $A/CNK - SiO_2$ фигуративные точки составов пород ульменского комплекса не попадают на тренд известково-щелочных вулканических пород орогенических регионов (рис. 9, d), а образуют своеобразный тренд, перпендикулярный ему.

Проявление тетрадного эффекта фракционирования (ТЭФ) РЗЭ W-типа свидетельствует о значительной роли воды и углекислоты в магматогенных флюидах. Интересно, как такой

Рис. 12. Диаграмма $TiO_2 - Fe_2O_3$ по [Gan et al., 2018] для пород ульменского комплекса. Поля перидотитов по [Falloon, 1988]: Depleted peridotite - деплетированный перидотит, Fertile peridotite – неистощённый перидотит, Refertilization - истощение, Triassic shoshonitic rocks of China [Wang, 2005; Mao, 2013] – триасовые шошонитовые породы Китая. Остальные условные обозначения см. на рис. 2.

флюидный режим влиял на поведение главных элементов руд — меди и золота Ульменского месторождения? На диаграмме соотношений меди и $TE_{1,3}$ в породах ульменского комплекса видно, что тренд увеличения ТЭФ РЗЭ W-типа связан с уменьшением концентраций меди (рис. 10).

Другая зависимость наблюдается для соотношений Au и $TE_{1,3}$. Тренд увеличения значений ТЭФ РЗЭ W-типа начинается вблизи хондритовых значений золота в породах и его максимальные значения отвечают высоким концентрациям золота в породах (рис. 11).

Следовательно, в отношении золота магматогенные флюиды должны были предпочтительно иметь оптимально высокие клонцентрации воды и углекислоты. Ранее нами установлено, что магматогенные флюиды сиенитов ульменского комплекса рассматривались как сильно восстановленные с чертами абиссальной фации глубинности, с высокими парциальными давлениями воды ($pH_2O=3,1$ Pa), углекислоты ($pCO_2=1,6$ Pa) и низкой фугитивностью кислорода ($lgfO_2=12,1$) [Гусев, Табакаева, 2014]. Данные показатели флюидного режима весьма благоприятные для формирования золотого оруденения.

ИНТЕРПРЕТАЦИЯ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

По данным Ю.А. Туркина, породы ульменского комплекса отнесены к позднеостроводужной стадиии, по химизму варьируют от низкощелочных толеитовых до умереннощелочных с содержанием $\rm K_2O$ от 0,2 до 2,9% и $\rm P_2O_5$ до 0,6%, в целом, характеризуясь повышенной глиноземистостью, пониженной титанистостью и магнезиальностью [Туркин, Федак, 2007].

Выше приведенные наши данные значительно уточняют химизм пород комплекса, отнесённых к умеренноглинозёмистым и пералюминиевому типам и высокомагнезиальным. Они рассматриваются нами как продукты шошонитовой серии. Такой же вывод нами сделан и ранее [Гусев и др., 2014].

Соотношения изотопов стронция (87 Sr/ 86 Sr) в габбро и сиенитах комплекса варьируют от 0,70522 до 0,70413, характерные для неконтаминированных мантийных магм [Гусев и др., 2014]. На мантийную природу габброидов и пироксенитов указывают и высокие концентрации в них таких элементов, как Sc, V, Cr, Ni, Co.

Соотношение титана и общего железа в породах ульменского комплекса указывает на то, что их мантийный источник был метасоматически обогащён (рис. 12). Сиениты комплекса близки к триасовым шошонитам Китая.

ВЫВОДЫ

- 1. Породы ульменского комплекса по петрогеохимическим данным относятся к шошонитовой серии. Их происхождение связывается с частичным плавлением метасоматизированной мантии.
- 2. Основные породы комплекса образовались за счёт плавления мантийного субстрата в переходной зоне от гранатового к лерцолитовому компонентам.
- 3. Сиенитовые разности пород обнаруживают признаки гибридных пород, для которых реставрируется присутствие корового компонента (за счёт плавление граувакк и амфиболитов).
- 4. Высокая насыщенность расплавов такими летучими компонентами как вода и углекислота обусловили проявление тетрадного эффекта фракционирования РЗЭ W-типа.

Водно-углекислотный характер магматогенных флюидов обеспечивал благоприятные условия для генерации жильного золото-сульфидно-кварцевого и золото-медно-скарнового оруденения.

Литература

Аникина Е.В., Краснобаев А.А., Пушкарев Е.В., Русин И.А. Природа циркона в габбро Волковского массива (Средний Урал): проблема возраста и геохронологические следствия // Литосфера, 2017, т. 17, вып. 4, с.16-29.

Виноградов А.П. Среднее содержание химических элементов в горных породах $/\!/$ Геохимия, 1962, № 7, с. 555–571.

Гусев А.И., Гусев Н.И., Коробейников А.Ф. Мантийный магматизм и типизация золоторудных узлов Горного Алтая и Горной Шории: петрологический и геофизический аспекты // Успехи современного естествознания, 2014, №7, с. 59-64.

Гусев А.И., Табакаева Е.М. Флюидный режим золотогенерирующих гранитоидов Горного Алтая как критерий их рудоносности // Вестник Алтайской науки, 2014, № 1, с. 247-252.

Гусев А.И. Кузнецовская магмо-рудно-метасоматическая система Западного Алтая // Геология и минерально-сырьевые ресурсы Сибири, 2016, №1, с. 104-114.

Котельников А.Д., Макаренко Н.А. О критериях расчленения нижнепалеозойской габбро-монцодиоритовой формации Кузнецкого Алатау на когтахский и кашпарский интрузивные комплексы // Геология и минерально-сырьевые ресурсы Сибири, 2018, №2, с.49-60.

 Π етрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования. — СПб: Издательство ВСЕГЕИ, 2009. — 200 с.

Туркин Ю.А., Федак С.И. Геология и структурно-вещественные комплексы Горного Алтая. – Томск: STT, 2008. – 460 с.

Хомичёв В.Л., Единцев Е.С., Кужельная Е.В. Эталон Хемчикского габбро-монцодиорит-сиенит-гранитового комплекса (Западный Саян). — Новосибирск: изд-во СНИИГГиМС, 2000.-244 с.

Шокальский С.П., Бабин Г.А., Владимиров А.Г и др. Корреляция магматических и метаморфических комплексов западной части Алтае-Саянской складчатой области. — Новосибирск: изд-во СО РАН, филиал «Гео». 2000.-187 с.

Aldanmaz E., Pearce J.A., Thirlwall M.F., Mitchell J.G. Petrogenetic evolution of late Cenozoic,

postcollision volcanism in western Anatolia, Turkey // Journal of Volcanology and Geothermal Research, 2000, vol. 102, p. 67-95.

Anders E., Greevesse N. Abundences of the elements: meteoric and solar // Geochim. Cosmochim. Acta., 1989, vol. 53, p. 197-214.

Barbarin B. A Review of the relationships between granitoid types, their origins and their geodynamic environments // Lithos, 1999, vol. 46, p. 605–626.

Ewart A. A review of the mineralogy and chemistry of Tertiary – Recent dacitic, latitic, rhyolitic and related salic rocks // Trondjemites, Dacites and Related Rocks. – Amsterdam, 1979. – P. 13-121.

Ewart A. The mineralogy and petrology of Tertiary – Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range // Andesites: Orogenic Andesites and Related Rocks. – Chichester, 1982. – P. 25-95.

Falloon T.J., *Green D.H.*, *Hatton C.J.*, *Harris K.L.* Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis // J. Petrol., 1988, vol. 29, p. 1257–1288.

Gan C., Zhang Y., Barry T.L. et al. Jurassic metasomatised lithospheric mantle beneath South China and its implications: Geochemical and Sr-Nd isotope evidence from the Late Jurassic shoshonitic rocks // Lithos, 2018, vol. 320–321, p. 236–249.

Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim. Cosmochim. Acta, 1999, vol. 63, № 3/4, p. 489-508.

Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geological Soc. America Bulletin, 1989, vol. 101, p. 635–643.

Mao J.R., Ye H.M., Liu, K. et al. The Indosinian collision-extension event between the South China Block and the Palaeo-Pacific plate: evidence from Indosinian alkaline granitic rocks in Dashuang, eastern Zhejiang, South China // Lithos, 2013, vol. 172, p. 81–97.

McLennan S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust // Geochemistry, Geophysics, Geosystems, 2001, vol. 2. Paper 2000GC000109. - 24 p.

Pearce J.F. A users guid to basalt discrimination diagrams // Geological Ass. Of Canada Short Course Notes, 1996, vol. 12, p. 79-113.

Peccerillo A., Taylor S. Rare earth elements in East Carpathian volcanic rocks // Earth Planet. Sci. Lett., 1976, vol. 32, p. 121–126.

Putirka K., Busby C.J. The tectonic significance of high-K₂O volcanism in the Sierra Nevada, California // Geology, 2007, vol. 35, p. 923-926.

Vigneresse J.L. The role of discontinuous magma inputs in felsic magma and ore generation // Ore geology Reviews, 2007, vol. 30, p. 181-216.

Villaseca C., Barbero L., Herreros V. A reexamination of the typology of peraluminous granite types in intracontinental orogenic belts // Trans. of Royal Soc. of Edinburg Earth Science, 1998, vol. 89, p. 113–119.

Wang Q., Li, J.W., Jian P. et al. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension // Earth Planet. Sci. Lett., 2005, vol. 230, № 3–4, p. 339–354.

Wasson J.T., Kallemeyn G.W. Composition of chondrites // Phil. Trans. R. Soc. Lond., 1988, vol. 78, p. 535-544.