ПЕТРОЛОГИЯ И МЕТАЛЛОГЕНИЯ РАЗНОВОЗРАСТНЫХ СИЕНИТОВ ГОРНОГО АЛТАЯ И МОНГОЛИИ

А.И. Гусев¹, Н.И. Гусев², А.А. Алексеенко¹, Колыванова О.С.¹

¹Бийск, Алтайский государственный гуманитарно-педагогический университет ²Санкт-Петербург, Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского

ВВЕДЕНИЕ

Умереннощелочные изверженные породы, к которым относятся сиенитоиды, тяготеют к тектоническим обстановкам растяжения, таким как посторогенные или внутриплитные [Sylvester, 1989; Whalen, Currie, 1987], плюмовым обстановкам крупных изверженных провинций [Zhang., Qin, 2019], а также к районам субдукции [Yan, Jiang, 2019; Schaarschmidt, Klemd, 2021]. Однако не получено согласия в объяснении процессов становления и генезиса калиевых магм с участием сиенитов [Conticelli et al., 2009; Liu et al., 2017; Rukhlov et al., 2013; Dostal et al., 2019]. Их происхождение остаётся загадкой. Чаще всего с сиенитами парагенетически и пространственно связано оруденение золота [Дворник и др., 2003; Гусев, 2012]. Однако имеются сведения о связи с сиенитами и редкометально-редкоземельного оруденения — циркония, ниобия, редких земель [Ярмолюк и др., 2021].

Цель исследования заключается в сопоставлении разновременных сиенитов по их петрогенезису и металлогеническим особенностям.

Актуальность исследований не вызывает сомнений, так как с сиенитами связаны месторождения стратегических металлов, включая Cu, Au, Zr, Nb, редкие земли (РЗЭ).

ПЕТРОГЕНЕЗИС И ОРУДЕНЕНИЕ СИЕНИТОВ

В Горном Алтае сиениты встречаются на 3 временных срезах: среднекембрийском в составе ульменского габбро-сиенитового комплекса, раннедевонском в Турочакском плутоне и раннетриасовом в Айском массиве. В Монголии сиенограниты встречаются в составе среднедевонского Халдзан-Бурегтейского массива размерами 30 х 8 км.

Сиениты ульменскго комплекса образуют дайки и малые тела размерами до 1 км². Среди них различаются щелочные сиениты и сиениты. Щелочные сиениты встречаются редко и представлены чаще всего серо-розовой и красновато-розоватой окраски породами, среднекристаллического сложения. Микроструктуры гипидиоморфнозернистая и микроклин-пертитовая. Состав (%): озаннит − 6-10, роговая обманка обыкновенная − 4-7, эпидот − 2-3, плагиоклаз − 10-15, микроклин − 75-80. Спектр акцессорных минералов: циркон, апатит, сфен, сульфиды, ортит, пренит − единичные зёрна. Озаннит образует овоидные выделения размерами до 1 см, создавая порфировидную структуру. Обыкновенная роговая обманка образует скопления мелких зёрен с отчётливым плеохроизмом от желтовато-зеленоватого до зеленовато-синего. Замещается эпидотом и хлоритом. Плагиоклаз определён олигоклазом № 10-12, местами сильно пелитизирован. Микроклин-пертит наблюдается в виде крупных изометричных выделений, нередко имеющих зональное строение. В центре их локализуется плагиоклаз (альбит), на который нарастает микроклин-пертит. Изредка отмечаются миаролитовые пустотки, инкрустированные по краям таблитчатыми кристалликами полевого шпата, эпидота и пренита.

Преобладающие сиениты – светло-серые с розоватым оттенком и светло-красные по-

роды, мелкозернистые. Микроструктура гипидиоморфнозернистая. Минеральный состав (%): микроклин-пертит — 75-80, плагиоклаз — 7-10, роговая обманка — 5-9, кварц — 1-2, эпидот — 1-2, апатит, циркон, сфен, сульфиды — единичные зёрна. Преобладающий микроклин-пертит формирует изометричные зёрна, редко крупные призматические выделения, имеющие зональное строение. В ядре таких кристаллов отмечается более интенсивная пелитизация. Плагиоклаз наблюдается в виде таблитчатых выделений и относится к альбит-олигоклазу с №№ 8-18. Обыкновенная роговая обманка окрашена в зеленовато-синеватые оттенки, ксеноморфна и часто замещается эпидотом и хлоритом.

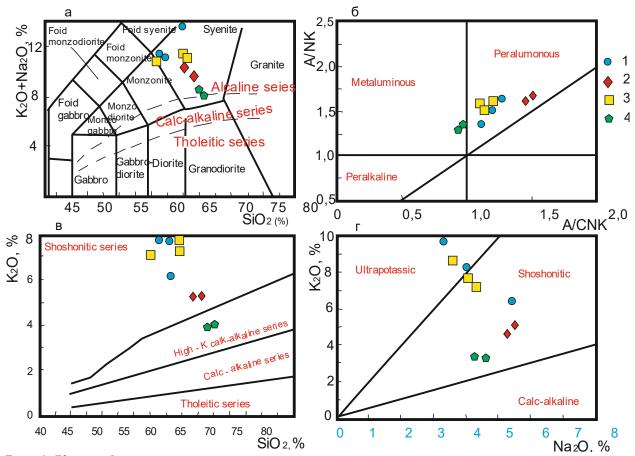
Щелочные кварцевые сиениты Турочакского плутона — светло-розовой окраски, локализуются вблизи гранодиоритов в центральной части массива. Контакты между ними чёткие, интрузивные с закалкой. Микроструктура пород гипидиоморфнозернистая в сочетании с микрографической. Состав: плагиоклаз An_{31-34} (36-43 %), ортоклаз (27-33 %), биотит (2-6 %), роговая обманка (4-10 %), кварц (13-17 %). Акцессории – циркон, ильменит, сфен, магнетит, турмалин, редко ортит. Плагиоклаз нередко имеет зональное строение с более основным андезином в ядре, местами замещённым мельчайшими агрегатами серицита и каолина. Периферическая каёмка имеет более кислый по составу андезин с меньшим количеством включений серицита. Калиевый полевой шпат представлен субидиоморфными зёрнами размерами 0,4-0,6 мм с обильными микрографическими остроугольными включениями кварца. Роговая обманка идиоморфна и образует призматические кристаллики длиной от 0,5 до 1 мм. Диагностируется натрогастингситом с пониженной железистостью (f = 33,1-33,4) и более высоким содержанием глинозёма, чем в гастингсите гранодиоритов (1 = 18,3-19,7). Алюминий в октаэдрической координации в структурной формуле натрогастингсита варьирует от 0,29 до 0,32 и скоординирован с алюминием тетраэдрической координации ($Al_{yy} = 2,03$ -1,95). Потенциал ионизации натрогастингсита составляет 183,4, указывая на менее кислотную и более основную среду кристаллизации амфибола в кварцевых сиенитах, чем в гранодиоритах. Химизм кварцевых сиенитов позволяет отнести их к щелочному ряду пород (сумма Na,О и K,О превышает 9,8 %). Для них характерны повышенные концентрации фосфора, высокая глинозёмистость (al = 5,1-5,3), повышенная агпаитность ($K_a = 0,79-0,82$) при почти равных содержаниях калия и натрия (Na₂O/K₂O = 1,03-1,08). Концентрации рубидия, стронция и бария, а также отношения нормированных отношений лантана к иттербию, отношения тория к урану близки таковым в гранодиоритах.

Сиениты, кварцевые сиениты и граносиениты второй фазы внедрения Айского массива связаны между собой постепенными переходами, с преобладанием двух последних разновидностей. Они слагают крупное (20 х 2 км) дугообразное тело, прослеженное почти непрерывно от г. Блинова на западе до хр. Типешка на востоке, а также в восточной части г. Бабырган. Сиениты и кварцевые сиениты представляют собой красновато-серые крупносреднезернистые массивные породы, состоящие из крупнопертитового калинатрового полевого шпата (44-80 %), амфибола (до 15 %) паргасит-феррогастингситового ряда (f = 45-56%), биотита (до 10 %) истонит-сидерофиллитового ряда (рис.1), сфена (до 2 %) и магнетита (1142 г/т), редко салита (f = 32-36 %). Характерно диференцированное распределение РЗЭ с резким преобладанием легких над тяжелыми лантаноидами при сумме РЗЭ = 186,7 г/т и слабой отрицательной аномалией по Eu. Отмечаются повышенные содержания (г/т) Rb (187), Sr (162), Zr (334). Иногда в сиенитах фиксируется аномально высокое содержание Sr (до 8750 г/т), которое прогрессивно убывает с ростом кремнекислотности пород. По геохимическим особенностям породы близки к типичным для сиенитовой породной группы в составе гранитоидных серий А,-типа. Граносиениты – крупно-среднезернистые равномернозернистые или порфировидные породы, состоящие из калишпата (35-44 %), плагиоклаза (28,7-32.5%), кварца (18-23 %), темно-бурого слабожелезистого (f = 37-42%) биотита, зеленого амфибола (2-3 %), переходного по составу между эденитом и обыкновенной роговой обманкой (f = 42-47 %), акцессорных сфена, циркона и апатита. Породы обладают сравнительно повышенными содержаниями бария (2500), стронция и калия относительно кварцевых сие-

1. Химический состав сиенитоидов Горного Алтая и Монголии (оксиды – в мас. %, элементы – в г/т, золото – в мг/т)

	1	2	3	4	5	6	7	8	9	10
SiO_2	60,2	59,9	62,6	65,25	64,6	57,12	61,87	62,5	66	66,3
TiO ₂	0,38	0,23	0,07	0,31	0,33	1,44	1,2	0,7	0,14	0,5
Al_2O_3	17,8	19,2	18	16,73	16,8	17,17	17,28	17,8	10,65	10,15
Fe_2O_3	2,3	1,75	0,72	1,65	1,6	3,07	2,12	2,1	1,5	2,18
FeO	2,1	1,1	0,73	0,6	0,7	3,98	2,01	1	1,3	1
MnO	0,09	0,08	0,05	0,08	0,07	0,17	0,12	0,09	0,16	0,2
MgO	1,14	0,91	0,69	0,95	0,99	1,48	0,67	0,81	0,1	0,15
CaO	2,81	3,43	1,55	1,25	1,3	3,52	2,12	1,95	3,69	3,1
Na ₂ O	5,7	3,07	2,92	5,12	5,2	3,65	3,04	4,35	4,55	4,63
K ₂ O	6,03	8,72	11,6	4,79	4,9	7,23	8,95	7,31	3,62	3,3
P_2O_5	0,4	0,06	0,05	0,35	0,4	0,32	0,16	0,12	0,04	0,03
Li	2,7	2,49	2,56	27,8	28,3	30	18,8	65,7	205	211
Be	4,2	4,9	4,74	1,5	2	2,5	3,8	12,7	5,1	4,1
Sc V	6,7	4,5	4,39	3	2,5	16,5	15,7	25,11	10	98
	61	51,7	53	10	9,3	7,6	8,1	8,45	19,6	20,1
Cr	3,2	1,4	1 92	9,5	8,1	24,6	25,2	25,6	38,5	8,7
Co Ni	2,6	1,78 2,5	1,83 2,41	1,8 1,2	1,5 1,1	1,3 21,5	1,4 21,2	1,28 21,83	1,1 171	1,2 50
Cu	94,6	88,4	87,8	5,7	6	55,2	61,3	66,6	6,3	11,2
Zn	31,4	27,1	26,3	15	13,6	45,8	49,2	56,2	138,3	89,2
Ag	0,45	0,3	0,27	0,5	0,4	0,3	0,2	0,2	0,2	0,3
Au	230	152	154	30	22	9,3	8,8	10	3,3	2,9
Sb	0,54	0,4	0,36	0,6	0,6	<0,1	<0,1	<0,1	0,5	0,7
Ga	21,6	21,7	20,7	16,5	15,5	25,7	26,8	26,1	36	45
Rb	193	148	138	145	151	125	109	187	104	135
Sr	302	273	263	127	126	162	159	155	17	12
Y	40,3	38,9	36,5	24,6	25,4	19,7	14,7	19,2	46	65
Zr	345	347	351	54	65	334	276	245	945	95
Nb	16	15	14,9	10,3	11,1	6,3	22,7	19,2	88	34
Sn	1,1	0,88	0,84	24,5	26,9	14,8	15,3	12,8	18,2	19,1
Cs	0,5	0,45	0,42	2,7	3,8	2,1	2,2	37,9	0,92\	0,4
Ba	486	290	283	257	255	2500	1956	404	131	45
La	46	98,6	96,7	25,1	26,7	17	46	45,8	224	231
Ce	78,5	140,6	141	39,1	40,1	46	58	59,7	582	659
Pr	1,8	12	11,9	5,5	5,6	3,1	9,8	10,1	59	71
Nd	19,1	38,1	37,6	22,2	23,7	22	24	25,2	211	260
Sm	2,8	5,5	5,43	4,5	4,9	6,5	5,4	6,6	61	83
Eu	0,51	0,66	0,68	1,02	1,1	1,64	1,42	1,2	6	8
Gd	3,9	5,6	5,38	5,1	6	6,5	6,1	6,7	65	92
Tb	0,75	0,8	0,76	0,8	0,76	1,1	0,94	1,2	19	25
Dy	4,2	4,55	4,48	3,42	3,5	5,1	3,9	5	175	203
Но	1,1	1,1	1,02	0,8	0,75	0,4	0,6	0,6	49	54
Er	4,2	3,6	3,29	2,11	2,5	1,1	1,3	1,4	200	216
Tm	0,52	0,65	0,62	0,36	0,44	0,5	0,4	0,4	39	40
Yb	4,6	4,7	4,62	2,21	2,3	3,1	2,8	3,1	269	277
Lu	0,39	0,8	0,82	0,35	0,37	0,5	0,4	0,5	38	40

	1	2	3	4	5	6	7	8	9	10
Hf	6	8,7	8,68	3,5	3,6	4,9	18	11,1	36	43
Ta	0,52	0,71	0,72	1,5	1,56	0,5	0,9	1,4	14,8	16,2
Pb	7,3	8,2	7,56	14,4	16,3	28,7	30,5	33,9	8,2	7
W	1,3	0,6	<0,5	15,3	17,1	1,1	0,9	1,5	9,7	11,6
Th	35,9	48,2	45,7	8,5	8,6	5,8	5,4	18,6	43,7	45,1
U	11,3	11,4	10,1	3,8	3,9	2,4	2,1	4,62	11,3	12,7
∑REE	208,7	356,2	350,8	137,2	142	133,9	175,4	186,7	2282	2719
$TE_{1,3}$	0,75	0,89	0,92	0,88	0,83	1,24	1,03	1,18	1,12	1,18
Eu/Eu*	0,48	0,36	0,38	0,47	0,62	0,77	0,75	0,54	0,64	0,28
(LaYb) _N	6,6	13,8	18,6	7,5	7,9	3,7	11,2	10,1	0,57	0,56
Nb/Ta	30,8	21,1	20,7	6,9	7,11	12,6	25,2	13,7	5,9	2,2
Zr/Hf	57,5	39,9	40,4	15,4	18,1	68,2	15,3	22,1	26,3	2,2
La/Nb	2,9	6,6	6,9	2,04	2,4	2,7	2,02	2,38	2,5	6,8
Ce/Y	1,94	3,61	3,9	1,6	1,6	2,3	3,9	3,1	12,7	10,1
Nb/Y	0,4	0,39	0,41	0,42	0,42	0,44	0,32	1	1,9	0,52
Zr/Y	8,6	8,9	9,6	9,6	2,2	2,6	18,8	12,8	20,5	1,5

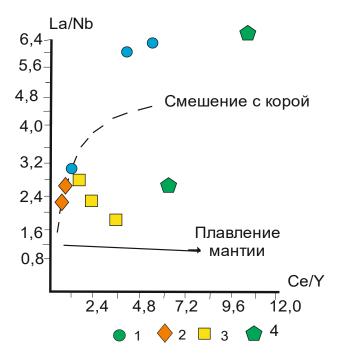

Примечание. П.П.П. – потери при прокаливании; N – элементы нормированы по [McDonough, Sun, 1995]. Eu*=(Sm $_{\rm N}$ +Gd $_{\rm N}$)/2. TE $_{1,3}$ – Тетрадный эффект фракционирования РЗЭ, как среднее между первой и третьей тетрадами по [Irber, 1999]. Сиенитоиды: Ульмень (\mathfrak{C}_2): 1-2 – сиениты, 3 – щелочные сиениты; Турочакский плутон (D): 4-5 – сиениты; Айский массив (\mathfrak{T}_1): 6-8 – сиениты; Халдзан-Бурегтейский массив: 9-10 – сиениты.

нитов. Для них характерны минимальные среди пород массива концентрации тория, тантала, ниобия, максимальные – циркония и иттрия.

Сиениты Халдзан-Бурегтейского массива характеризуются варьирующей степенью кристалличности пород от среднезернистой до крупнозернистой и пегматоидной. Они состоят из калий-натрового пертитового полевого шпата (45-50 %), эгирина, щелочного амфибола, биотита (5-6 %), кварца (4 %) и редких зёрен акцессориев (циркона, апатита, сфена, флюрита). Следует отметить, что сиениты Халдзан-Бурегтейского массива ассоциируют с весьма широкой группой породных типов щелочных гранитов, пантеллеритов, нордмаркитов, щелочных базитов. Породы характеризуются очень высокими суммарными содержаниями РЗЭ (2282 и 2719 г/т), циркония (945), ниобия 88 г/т) и самыми низкими концентрациями бария. В них высокие концентрации мантийных элементов – хрома и никеля.

Химизм представительных анализов сиенитоидов представлен в табл. 1. Сопоставление составов пород показывает их принадлежность к кварцевым щелочным сиенитам и сиенитам. На классификационных диаграммах сиенитоиды попадают в разные поля и серии (рис. 1). На TAS-диаграмме все анализируемые породы локализуются в поле сиенитов (рис. 1, а). Соотношения A/NK и A/CNK демонстрирует принадлежность сиенитов Халдзан-Бурегтейского массива к метаалюминиевому типу пород, а всех остальных - к пералюминиевому, пересыщенному глиноземом (рис. 1, б). Монгольские сиениты по соотношению K_2O и SiO_2 относятся к высоко-К известково-щелочной серии, а горно-алтайские – к шошонитовой (рис. 1, в). В координатах K_2O — Na_2O преобладающая часть пород локализуется в шошонитовой области, и лишь некоторые сиениты Ульмени и Айского массива попадают в поле ультракалиевых пород (рис. 1, г).

Наиболее заметные различия в микроэлементом составе наблюдаются по отношениям Nb/Ta, концентрациям Cr, Ni, Sc и проявлению тетрадного эффекта фракционирования редкоземельных элементов (ТЭФ РЗЭ). На диаграмме соотношений La/Nb — Ce/Y фигуративные точки составов пород Ульмени, Халдзан-Бурегтейского массива и Турочакского плуто-


Рис. 1. Классификационные диаграммы для сиенитоидов региона а - TAS-диаграмма по [Middlemost, 1994]; б,в – диаграммы A/NK – A/CNK и SiO_2 – K_2O – по [Peccerillo, Taylor, 1976]; г – диаграмма K_2O – Na_2O по [Turner et al., 1996]. Сиениты: 1 – Ульмени, 2 – Турочакского плутона, 3 – Айского массива, 4 – сиениты Халдзан-Бурегтейского массива Монголии.

на попадают на тренд смешения мантийного и корового источников, а Айского массива — ближе к плавлению мантийного компонента (рис. 2).

По соотношениям других микроэлементов петрогенезис анализируемых пород несколько иной. В координатах La/Yb — La отчётливо выделяются 2 кластера фигуративных точек: горно-алтайские сиенитоиды ближе к тренду смешения пород мантии и земной коры, а сиенитоиды Монголии — к тренду фракционной кристаллизации (рис. 3, a). Соотношение Th — Th/Ti в породах ближе к тренду смешения или фракционной кристаллизаци (рис. a), что не противоречит положению фигуративных точек составов пород на рис. a

По соотношениям Nb/Y и Zr/Y характеризуемые породы попадают в разные поля: Ульменские в островодужную область, отражая преобладающий компонент плавления нижнекорового субстрата дугового характера; Турочакские и Айские сиениты обнаруживают двойственную природу — близость к базальтоидам океанических плато и базальтам островных дуг, отражая разную степень контаминации коровым материалом; Халдзан-Бурегтейские сиенитоиды обнаруживают близость к базальтам океанических островов и базальтам океанических плато (рис. 4).

Высокие отношения Nb/Ta (от 20,7 до 30,8) и Zr/Hf (от 39,9 до 57,5) в сиенитоидах Ульмени свидетельствуют о вовлечении в плавление материала нижней коры [Rudnick, 2003]. Низкие отношения Nb/Ta и Zr/Hf в породах Турочакского плутона указывают на плавление пород верхней коры. Повышенные концентрации Cr, Ni, Sc в породах Айского массива позволяют предполагать значительную роль мантийных субстратов в их генерации. Такие разные источники плавления и отличия в TЭ Φ P3 Θ предопределили и металлогенический про-

Рис. 2. Диаграмма соотношений Ce/Y – La/Nb по [Barbarin, 1999] для сиенитов Горного Алтая и Монголии.

Сиениты: 1 – Ульмени, 2 – Турочакского плутона, 3 – Айского массива, 4 – сиениты Халдзан-Бурегтейского массива Монголии.

филь глубинных очагов. С сиенитами Ульмени наблюдается тесная пространственная и парагенетическая связь золото-медноскарнового и золото-сульфидно-кварцевого оруденения. Металлы переносились в виде высоководных и обогащённых СО₂ флюидах, о чём свидетельствует проявление ТЭФ РЗЭ W-типа. С сиенитами Турочакского плутона ассоциируют грейзеновые и жильные месторождения и проявления W, Ta, Nb. В Айских сиенитах проявлен ТЭФ РЗЭ М-типа (значение TE_{1,3} более 1,1), что указывает на обилие и активность фтор-комплек-

сов в магматогенных флюидах, переносивших олово и редкие земли, грейзеновые и жильные проявления которых тесно связаны с сиенитами массива. ХалдзанБурегтейские сиениты характеризуются повышенными концентрациями мантийных элементами – хрома, никеля, скандия, указывающих на мантийную природу. И массив, и дайковый пояс базальтоидов этого района принадлежат зоне растяжения, входящей в южную ветвь тройного сочленения, располагавшейся над мантийным плюмом [Коваленко и др., 2004].

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Предложено несколько моделей происхождения и характера магматических явлений для щелочных процессов, формирующих сиенитоиды, включающие: 1 — остаточные расплавы, сформированные фракционной кристаллизацией щелочных базальтовых магм [Yang et al., 2005; Zhu et al., 2016]; 2 — расплавы, сформированные низкой степенью частичного плавления метасоматизированной мантии [Ke et al., 2016; Lynch et al., 1993; Yang et al., 2012]; 3 — расплавы, сформированные частичным плавлением коровых материалов в условиях давле-

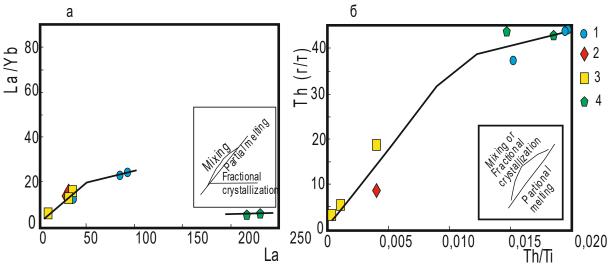


Рис. 3. Петрогенетические диаграммы (по [Schiano et al., 2010]) для сиенитоидов региона. Условные обозначения см. на рис. 2.

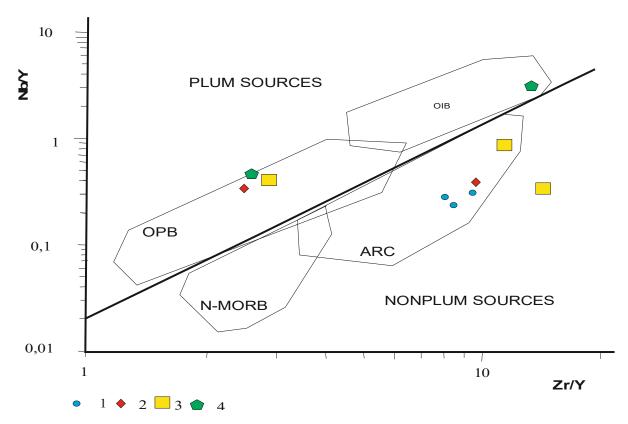


Рис. 4. Диаграмма Nb/Y – Zr/Y по [Condie, 2005] для сиенитоидов Горного Алтая и Монголии.


Поля плюмовых источников: OPB — базальты океанических плато; OIB — базальты океанических островов. Поля неплюмовых источников: N-MORB — базальты срединно-океанических хребтов, ARC — островодужные базальты. Остальные усл. обозн. - на рис. 1.

ний, типичных для основания утолщённой земной коры в закрытой системе [Dai et al., 2017; Zhu et al., 2013], или с притоком летучих компонентов [Huang and Wyllie, 1975; Litvinovsky et al., 2015]; 4 — смесь коровой анатектической гранитной и мантийно-производной мафической магм, сопровождающаяся последующей кристалл-дифференциацией (Barker et al., 1975; Yang et al., 2008b]; 5 — щелочные изверженные породы могут также генерироваться путём прямого частичного плавления верхнемантийных перидотитов [Laporte et al., 2014].

Известно, что шошонитовая серия пород, к которой тяготеют все сиенитоиды региона, является К-обогащённой ассоциацией пород, характеризующихся обогащением крупноионными литофильными элементами (LILE) и лёгкими редкоземельными элементами (LREE), что в комбинации с относительной деплетированностью высокозарядными элементами позволяет некоторым исследователям относить их к самостоятельной серии пород [Morrison, 1980].

По нашим данным, разновозрастные сиениты региона относятся к пост-коллизионным образованиям и связаны с функционированием мантийных плюмов и процессами смешения мантийного и корового материала [Гусев, 2012; Гусев, Гусев, Одинцев, 2019]. Роль корового материала была различна в сравниваемых объектах, которая совместно с флюидным режимом и предопределяла различный металлогенический профиль. Выделяются два контрастных типа сиенитоидов по комплексу признаков: Ульменский и Халдзан-Бурегтейский. Сиенитоиды Горного Алтая формировались в результате смешения мантийного и корового материала, а Монголии — в результате сложных процессов фракционной кристаллизации.

Рассмотренные особенности сиенитов Ульмени свидетельствуют о том, что они обнаруживают признаки гибридных образований, для которых реставрируется самое значительное присутствие корового компонента (за счёт плавление граувакк и амфиболитов). Плавление осуществлялось под воздействием мантийной базальтовой магмы. Сиенитовые породы

Рис. 5. Диаграмма Nb – ТЕ1,3 для сиенитоидов Горного Алтая и Моноголии.

Increasing of TEF REE M-type - увеличение ТЭФ РЗЭ М-типа; Area variation of Nb in igneous rocks — область вариаций содержаний ниобия в изверженных породах по [Виноградов, 1962]; Chondrites — концентрации ниобия в хондритах по [Wasson, Kallemeyn, 1988]. Остальные усл. обозн. - на рис. 1.

были насыщены флюидами, в которых важная роль принадлежала таким летучим компонентам как CO_2 , $\mathrm{H}_2\mathrm{O}$. Последние играли важнейшую роль в проявлении тетрадного эффекта фракционирования РЗЭ W-типа и переносе золота, меди и других металлов гидротермальными растворами. Наиболь-

шее значение имеют месторождения и проявления золото-медно-скарнового и жильного золото-сульфидно-кварцевого типов.

Сиениты Халдзан-Бурегтейского массива в наибольшей степени показывают мантийную плюмовую природу. Вероятно, они образовались как результат дифференциации базальтовой магмы [Кетре et al., 2015]. По нашим данным, главную роль играла фракционная кристаллизация, обеспечивавшая фракционирование на поздних стадиях родоначальной магмы карбонатитов и мощных метасоматитов с рудной нагрузкой спектра рудных элементов — Zr, Nb, Y, тяжёлых РЗЭ. Подтверждением большого потенциала флюидов является проявление ТЭФ РЗЭ М-типа, обусловленное активностью фтор-комплексов в магматогенных флюидах, извлекавших широкий спектр элементов из глубинного очага и переносивших их в места рудоотложения.

На диаграмме Nb — TE_{1,3} наглядно видно, что для сиеитоидов Халдзан-Бурегте увеличение концентраций ниобия происходит с уменьшением величин тетрадного эффекта фракционирования РЗЭ М-типа (рис. 5). Аналогичная закономерность отмечается для анализируемых соотношений в сиенитах Айского массива Горного Алтая. В сиенитах Ульмени и Турочака направленность трендов совершенно противоположная, для которой наблюдается увеличение концентраций ниобия с уменьшением значений ТЭФ РЗЭ W-типа (рис. 5). Эти особенности поведения ниобия и тренды изменения ТЭФ РЗЭ разных типов обусловлены менявшимися физико-химическими параметрами среды кристаллизации сиенитов (кислотноосновными) [Гусев, 2012].

Крупное месторождение Халдзан-Бурегте сформирвалось с участием флюидов и карбонатитовой магмы на глубине с образованием сложных по составу метасоматитов, включающих кварц, альбит, микроклин, амфибол, эгирин, энигматит, циркон, гиттинсит, эльпидит. Спектр акцессориев в метасоматитах обширен: катаплеит, гематит, кальцит, пирохлор, флюорит, полилитионит, ильменит, бертрандит, магнетит, сенаит и другие. В результате активной деятельности флюидов было генерировано крупное комплексное месторождение циркония, ниобия, редкоземельных элементов, в том числе тяжёлых РЗЭ и иттрия [Коваленко и др., 1985]. Содержания циркония в рудах могут достигать более 5 %, а суммы РЗЭ – более 8,7 %. Месторождение Халдзан-Бурегте готовится к эксплуатации.

В геодинамическом плане Ульменские сиенитоиды близки к островодужной обстановке, отражая преобладающий компонент плавления нижнекорового субстрата дугового ха-

рактера; Турочакские и Айские сиениты обнаруживают двойственную природу – близость к базальтоидам океанических плато и базальтам островных дуг, отражая разную степень контаминации коровым материалом; Халдзан-Бурегтейские сиенитоиды обнаруживают близость к базальтам океанических островов и базальтам океанических плато.

Литература

Виноградов А.П. Средние содержания химических элементов в главных типах изверженных пород земной коры // Геохимия, 1962, № 7, с. 555-572.

Гусев А.И. Постколлизионные гранитоиды: петрология, геохимия, флюидный режим и оруденение. – Gamburgh: Palmarium Academic Publishing, 2012. – 217 с.

Гусев А.И. Золотоносные щелочные магматические комплексы // Успехи современного естествознания, 2012, № 9, с. 47-52.

Гусев А.И., Гусев Н.И., Одинцев А.В. Геохимия, петрология и генезис ульменского сиенит-пироксенит-габбрового комплекса Северного Алтая // Природные ресурсы Горного Алтая, 2019, № 1-2, с.29-40.

Дворник Г.П., Угрюмов А.Н., Балахонов В.С. Метасоматиты и золото-джаспероидное оруденение в контактовой зоне Аномального щелочного массива с вмещающими карбонатными породами // Известия Уральской государственной горно-геологической академии. Серия: геология и геофизика, 2003. вып. 18, с. 105-109.

Коваленко В.И., Горегляд А.В., Царёва Г.М. Халдзан-Бурегтейский массив — новое проявление редкометалльных щелочных гранитоидов МНР // Докл. АН СССР, 1985, т. 280, № 4, с. 954-959.

Коваленко В.И., Ярмолюк В.В., Сальникова Е.Б. и др. Халдзан-Бурегтейский массив щелочных и редкометальных магматических пород: строение, геохронология и геодинамическое положение в каледонидах Западной Монголии // Петрология, 2004, т. 12, № 5, с. 467-494.

Ярмолюк В.В., Козловский А.М., Никифоров А.В., Кудряшова Е.А., Хертек А.К. Возраст и состав Дугдинского массива щелочных пород (Восточный Саян) // Доклады РАН. Науки о Земле, 2021, т. 499, № 1, с. 33-41.

Barbarin B. A. Review of the relationships between granitoid types, their origins and their geodynamic environments // Lithos, 1999, v. 46, p. 605-626.

Barker F., Wones D.R., Sharp W.N., Desborough G.A. The Pikes Peak batholith, Colorado Front Range, and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite // Precambrian Research, 1975, v. 2, p. 97–160.

Condie K.C. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos, 2005, v. 79 (3-4), p. 491–504.

Conticelli S. et al. Trace elements and Sr-Nd-Pb isotopes of K-rich shoshonitic, and calcalkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calcalkaline magmatic associations in a post-collisional geodynamic setting // Lithos, 2009, v. 107, p. 68–92.

Coulson I.M., Russell J.K., Dipple G.M. Origins of the Zippa Mountain pluton: a late Triassic, arc-derived, ultrapotassic magma from the Canadian Cordillera // Canadian Journal of Earth Sciences, 1999, v. 36, p. 1415–1434.

Dai F.Q., Zhao Z.F., Zheng Y.F. Partial melting of the orogenic lower crust: geochemical insights from post-collisional alkaline volcanics in the Dabie orogen // Chemical Geology, 2017, v. 454, p. 25–43.

Dostal J., Shellnutt J.G., Church B.N. Petrogenesis of an Eocene syenitic intrusion from south-central British Columbia: Evidence for increasing influence of cratonic Laurentia on alkaline magmatism of western North America // Lithos, 2019, v. 332–333, p. 67–82.

Huang W.L., Wyllie P.J. Melting reaction in the system $NaAlSi_3O_8$ – $KalSi_3O_8$ – SiO_2 to 35 kilobars, dry and with excess water // Journal of Geology, 1975, v. 83, p. 737–748.

- *Irber W.* The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim. Cosmochim. Acta, 1999, v. 63, p. 489-508.
- Ke S., Teng F.Z., Li S.G., Gao T., Liu S.A., He H.S., Mo X.X. Mg, Sr, and O isotope geochemistry of syenites from Northwest Xinjiang, China: tracing carbonate recycling during Tethyan oceanic subduction // Chemical Geology, 2016, v. 437, p. 109-119.
- Kempe U., Mîckel R., Graupner T., Kynicky J., Dombon E. The genesis of Zr-Nb-REE mineralisation at KhalzanBuregte (Western Mongolia) reconsidered // Ore Geology Reviews, 2015, v. 64, p. 602-625
- Laporte D., Lambart S., Schiano P., Ottolini L. Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantel peridotites // Earth Planet Science Letters, 2014, v. 404, p. 319-331.
- *Litvinovsky B.A., Jahn B.M., Eyal M.* Mantle-derived sources of syenites from the A-type igneous suites New approach to the provenance of alkaline silicic magmas // Lithos, 2015, v. 232, p. 242–265.
- Liu D., Zhao Z., DePaolo D., Zhu D.C., Meng F.Y., Shi Q., Wang Q. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle-crust interaction and mass transfer from Indian plate // Lithos, 2017, v. 268-271, p. 48-64.
- Lynch D.J., Musselman T.E., Gutmann J.T., Patchett P.J. Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico // Lithos, 1993, v. 29, p. 295-302.
- McDonough W.F., Sun S. The composition of the Earth // Chem. Geol., 1995, v. 120, p. 223-253.
- *Middlemost E.A.K.* Naming materials in the magma/igneous rock system // Earth Sci. Rev., 1994, v. 37 (3), p. 215-224.
- *Morrison G.W.* Characteristics and tectonic setting of the shoshonite rock association // Lithos, 1980, v. 13 (1), p. 97-108.
- *Peccerillo A., Taylor S.R.* Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey // Contrib. Miner. Petrol., 1976, v. 58 (1), p. 63-81.
- *Rudnick R.L., Gao S.* Composition of the continental crust // Treatise on Geochemistry. V. 3: the Crust / Ed. by R. Rudnick. Amsterdam: Elsevier, 2003. P. 1-64.
- Rukhlov A.S., Blinova A.I., Pawlowicz J.G. Geochemistry, mineralogy and petrology of the Eocene potassic magmatism from the Milk River area, southern Alberta, and Sweet Grass Hills, northern Montana // Chemical Geology, 2013, v. 353, p. 280-302.
- *Schaarschmidt A., Klemd R. et al.* The formation of shoshonitic magma and its relationship to porphyry-type mineralisation: the Maronia pluton in NE // Lithos, 2021, v. 380-381.
- Schiano P., Monzier M., Eissen J.P., Martin H., Koga K.T. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes // Contrib. Miner. Petrol., 2010, v. 160 (2), p. 297-312.
- *Sylvester P.J.* Post-collisional alkaline granites // The Journal of Geology, 1989, v. 97, № 3, p. 261-280.
- Turner S., Arnaud N., Liu J., Rogers N., Hawkesworth C., Harris N., Kelley S., van Calsteren P., Deng W. Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts // J. Petrol., 1996, v. 37 (1), p. 45-71.
- *Wasson J.T., Kallemeyn G.W.* Composition of chondrites // Phil. Trans. R. Soc. Lond, 1988, v. 201, p. 535-544.
- Whalen J.B., Currie K.L., Chappell B.W. A-type granites: geochemical characteristics, discrimination and petrogenesis // Contributions to Mineralogy and Petrology, 1987, v. 95, p. 407-419.

- Yan X., Jiang Sh.-Y. Petrogenesis and tectonic implications of Early Cretaceous shoshonitic syenites in the northern Wuyi Mt Range, Southeast China // Journal of Asian Earth Sciences, 2019, v. 180.
- Yang J.H., Chung S.L., Wilde S.A., Wu F.Y., Chu M.F., Lo C.H., Fan H.R. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence // Chemical Geology, 2005, v. 214, p. 99-125.
- Yang J.H., Wu F.Y., Wilde S.A., Chen F.K., Liu X.M., Xie L.W. Petrogenesis of an alkali syenite-granite-rhyolite suite in the Yanshan Fold and Thrust Belt, eastern North China Craton: Geochronological, Geochemical and Nd-Sr-Hf isotopic evidence for lithospheric thinning // Journal of Petrology, 2008, v. 49, p. 315-351.
- *Yang J.H., Sun J.F., Zhang M., Wu F.Y., Wilde S.A.* Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension // Chemical Geology, 2012, v. 328, p. 149-167.
- Zhang Z., Qin J., Lai S., Long X. et al. Origin of Late Permian syenite and gabbro from the Panxi rift, SW China: the fractionation process of mafic magma in the inner zone of the Emeishan mantle plume // Lithos, 2019, v. 346-347.
- Zhu K. Y., Li Z.X., Xu X.S., Wilde S.A. Late Triassic melting of a thickened crust in southeastern China: evidence for flat-slab subduction of the Paleo-Pacific plate // Journal of Asian Earth Sciences, 2013, v. 74, p. 265-279.
- Zhu Y.S., Yang J.H., Sun J.F., Zhang J.H., Wu F.Y. Petrogenesis of coeval silica saturated and silica-undersaturated alkaline rocks: mineralogical and geochemical evidence from the Saima alkaline complex, NE China // Journal of Asian Earth Sciences, 2016, v. 117, p. 184-207.